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Abstract8

A new method for optimizing the layout of device-routing systems is presented. Gradient-9

based topology optimization techniques are used to simultaneously optimize both device locations10

and routing paths of device interconnects. In addition to geometric considerations, this method11

supports optimization based on system behavior by including physics-based objectives and constraints.12

Multiple physics domains are modeled using lumped parameter and finite element models. A13

geometric projection for devices of arbitrary polygonal shape is developed along with sensitivity14

analysis. Two thermal-fluid systems are optimized to demonstrate the use of this method.15

1 Introduction16

Power electronics circuits and fluid cooling systems (and many other types of other engineering17

systems) are composed of devices that exchange energy, as well as routing (interconnects) that facilitate18

energy transfer. One reason these systems are difficult to design is that they have many requirements,19

including: performance, cost, geometry, and volume restrictions. Identification of feasible designs20

can be exceptionally difficult in applications where space is limited, devices and interconnects involve21

complicated geometries, and system performance depends on spatial relationships and multiple physics22

couplings. Current practice relies largely upon human expertise, design rules, and manual design23

adjustments to solve these problems. This limits both the complexity of systems that can be designed24

involving non-trivial packing and routing decisions, as well as realization of potentially improved25

functionality or performance. Many previous efforts have focused on creating design automation26

methods to address elements of the integrated packing and routing problem described here. In this article,27

a design automation approach is presented that integrates several of these elements as a step toward28

more comprehensive solution of 3D packing and routing problems with both geometric and physics29

considerations.30

Automated design methods for aspects of the device-routing layout problem have been developed31

and studied in the context of several applications, including electronic module layout design [1], vehicle32

assembly [2], layout of components in additive manufacturing [3], and automotive transmission design33

[4]. Optimal packaging approaches have incorporated metrics such as mass properties and spatial criteria34

[5], and have utilized solutions methods such as simulated annealing [6, 7] and pattern search (PS) [8, 9].35

Many efforts have addressed the interconnect routing problem specifically, where device layout is held36

fixed. In addition to creation of general engineering system routing methods [10], application-specific37

efforts include pipe routing in ship engine rooms [11], aircraft engines (using genetic algorithms [12] or38

ant colony optimization (ACO) [13]), aerospace system routing [14], electrical wire routing in buildings39

[15], and oil industry equipment using ACO [16].40

The above methods address only routing (geometrically placing) the device interconnects, or only41

device layout, but not both simultaneously. Also, they do not take into account performance considera-42

tions that require physics-based simulation for evaluation when making automated routing decisions.43
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In these existing methods, performance evaluation of these designs is left to human designers. The44

amount of time required for a designer to generate a feasible design and analyze its performance limits45

the ability of engineers to explore these complex design spaces within a constrained project timeline.46

These strategies can produce feasible designs, but they may not be optimal when considering all the47

system requirements, and the complexity of systems that can be considered is limited. In current practice,48

layout and routing problems are solved manually, which severely limits design capabilities for systems49

involving complex packing and routing tasks (especially in cases with strong physics interactions). In50

this research, computational methods will be presented that have the potential to generate designs faster,51

with better system performance, and for higher-complexity systems than those designed with methods52

that require significant human input.53

Topology optimization, defined here as the optimal placement of material in a 2D or 3D geometric54

domain, does take into account models of physical behavior. This method has been used across a55

range of engineering domains, including to design structures for maximum stiffness [17], multi-material56

properties [18], or component geometries for optimal heat conduction properties [19, 20]. Problems that57

include multiple distinct physics domains have also been studied. De Kruijf et al., Takezawa et al. and58

Kang & James performed optimization studies which included both structural and thermal conduction59

requirements [21–23]. The aerodynamic shape and internal structure of a wing have been optimized60

simultaneously [24–26] considering the interaction between aerodynamic loading and structural wing61

response. Topology optimization has also been used to optimize the placement of components and62

their supporting structure [27, 28]. This allows sections of specific geometry, such as a pattern of bolt63

holes, to be distributed optimally within a structure. Designs produced by topology optimization are64

often infeasible for traditional manufacturing methods (subtractive, formative), but often can be made65

using additive manufacturing [29]. The design of components that are more easily manufactured using66

traditional methods motivates the development of methods that optimize designs made from standard67

material sizes and shapes, typically using ground structure methods [30, 31]. The geometric projection68

methods in Refs. [32, 33] have also been suggested to optimize structures made from stock materials.69

1.1 Objectives and Contributions70

The primary objective of this work is to demonstrate the use of gradient-based topology optimization71

methods in optimal electro-thermal system layout problems. Optimal placement of devices (packing) and72

connections between devices (interconnect routing) are two separate NP-hard problems. The proposed73

method combines both the device placement and interconnect routing problems, in addition to using74

physics-based models for design comparison. The core contributions of this work are as follows:75

1. We present a novel technique that supports simultaneous optimization of device placement and76

interconnect paths, whereas existing methods treat device layout and interconnect routing separately77

(e.g., optimal routing with fixed layout).78

2. Physics-based objectives and constraints were incorporated into the optimization problem, in79

addition to geometric constraints that prevent interference between devices and interconnects. Both80

1D lumped parameter and 2D finite element physics models are used within a single optimization81

problem to support physics-based evaluation.82

3. We use the geometric projection method (GPM) of Norato et. al [32], which is an alternative to the83

well-established SIMP (Solid Isotropic Material with Penalization) method design parameterization84

[34] for solving the optimization problem.85

4. We demonstrated the effectiveness of the proposed method via the solution of two device-routing86

test cases that utilize physics-based simulations.87
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The new simultaneous approach makes significant system volume reduction possible. The projection88

method of Norato et al. [32] is extended to allow devices of arbitrary polygonal shape to be projected.89

Sensitivity analysis for this projection is provided to allow the efficient use of gradient-based90

optimization methods. Examples presented later in this article consider thermal conduction on the91

continuum level using the finite element method, and a lumped parameter pipe flow model. The methods92

presented here, however, could be extended to model other combinations of physics; for example, thermal-93

electric or structural-fluid systems. Section 2 presents the models used to simulate the physics response94

of the system. Section 3 states the optimization problem and presents the derived function sensitivities.95

Finally, the method is demonstrated in Section 4 through the optimization of two device-routing systems.96

2 Physics models97

2.1 Steady state thermal conduction98

Temperature distribution will be modeled on the continuum level using the finite element method.
The strong form of the boundary value problem for heat conduction is given by:

∇ · (κ∇T (x)) + Q = 0, x in Ω (1)
T (x) = T ∗, x on ΓT (2)

n · (κ∇T (x)) = q∗, x on Γq, (3)

where κ is the matrix of thermal conduction coefficients, T (x) is the temperature solution field, Q is heat99

flux per unit volume in the domain, and n is the unit normal to the domain boundary. Temperature, T ∗,100

and heat flux, q∗, boundary conditions are applied on the ΓT and Γq portions of the domain boundary,101

respectively. Detailed derivation of the finite element equations and implementation can be found in102

Ref. [35]. Here we will skip to the final equation that solves for temperatures at the nodes of the finite103

element mesh, which is obtained by discretizing the boundary value problem in Eqns. (1)-(3) using the104

finite element method.105

KT = P (4)

Equation (4) is solved for the temperature field vector T , whereK is the global thermal stiffness matrix106

assembled from element stiffness matrices, kel, defined in Eqn. (5), and P is the global load vector107

assembled from element load vectors, pel, defined in Eqn. (6).108

kel =

∫
Ωe

BTκBdΩ −

∫
∂Ωh

hNN T d∂Ωh (5)

109

pel =

∫
Ωe

QNdΩ +

∫
∂Ωh

hTenvNd∂Ωh. (6)

Here,N andB are element shape function and shape function gradients, respectively. These equations110

also include convection boundary conditions on the ∂Ωh portion of the boundary. The temperature of the111

convecting fluid is Tenv, and the convection coefficient is h (assumed constant here).112

Here the geometric projection method of Norato et al [32] is used. In the original projection method113

work, the new parameterization approach was used to optimize structures while ensuring that the resulting114

design could be made from stock materials, such as structural beams with standard shapes and sizes. We115

discovered that this method can be extended beneficially to the combined layout and routing optimization116

problem. The geometric projection method is used to create routing designs that can be manufactured117

out of standard circular cross-section pipes. The geometric parameterization involves design variables118
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that facilitate convenient derivation of lumped parameter model (Sec. 2.2) sensitivities. The remainder of119

this section will give a brief overview of the geometric projection method, and detail changes made for120

use with the routing and packaging problem.121

In the projection method, each element in the mesh is assigned a density parameter ρi with a value122

between zero and one. Solid material corresponds to ρi = 1, and void material corresponds to ρi = 0.123

The material properties for each element stiffness matrix ki are scaled by 0 ≤ ρi ≤ 1. Leaving out the124

convection boundary condition term, the element stiffness matrix is:125

ki = (ρmin + (1 − ρmin)ρp
i )

∫
Ωe

BTκBdΩ = (ρmin + (1 − ρmin)ρp
i )k0, (7)

where p is a penalization parameter used to penalize intermediate densities between 1 and 0, leading126

to a projection with less gray area between solid and void. The convection boundary condition term is127

independent of ρi, so can be omitted without loss of generality. If a regular mesh with all elements being128

the same shape and size is used, then the second form of Eqn. (7) can be applied to reduce computational129

expense, since the integral term is the same for all elements. A minimum density, ρmin, is enforced to130

prevent singularity in the global stiffness matrix. For structural problems, the smallest ρmin that prevents131

ill-conditioning is used. In thermal problems, however, a physically-meaningful minimum density can132

be chosen to simulate the thermal conductivity of the surrounding medium, for example, air.133

The density of each element is found by projecting geometric shapes onto the mesh. Norato et134

al. proposed bars with rounded ends as a shape which could be projected easily, and the same will be135

used here. Each bar involves three parameters: segment start and end points x0 and x f , and bar width w136

(Fig. 1). The parameter for out-of-plane thickness (that was presented in the original formulation) is left137

out here because the new method presented here requires that bars are not removed. This is important138

because the bars form a flow network, and bar removal could break flow paths. The signed distance139

between a bar q and an element with center at p is:140

φq(dq(xq0 ,xq f ,p),w) = dq(xq0 ,xq f ,p) −
w
2
, (8)

where dq is the distance between the segment q and point p. See Ref. [32] for the distance calculation. A141

circle of radius r is placed at the element center. The density assigned to each element is the area of the142

circle covered by the bar divided by total area of the circle—see the shaded area of Fig. 1. The density as143

a function of signed distance is given by:144

ρq(dq(xq0 ,xq f ,p), r) =


0 φq > r

1
πr2

[
r2 cos−1

(
φq(dq)

r

)
− φq(dq)

√
r2 − φq(dq)2

]
−r ≤ φq ≤ r

1 φq < −r

(9)

The radius r determines the width of the grey area projected on to the mesh by the bar. A smaller radius145

will more accurately represent the bar geometry as a projection of mostly ones and zeros. To ensure that146

any element which touches a bar has a nonzero density, a radius that circumscribes the square elements147

is used in this paper. The radius must be less than half of the bar width in order for Eqn.(9) to correctly148

calculate the area intersected by the circle and bar.149

In the combined layout and routing optimization problem, devices must also be included in the finite
element analysis model. Devices are approximated as polygonal shapes with straight edges. Each device
will be defined by a reference point, cd, and a set of vectors, bi, pointing from the reference point to
polygon vertices. The device densities are calculated by first projecting each edge of the polygon as a
rounded bar, and then filling in elements inside the polygon with density of 1 (Fig. 2). Densities for each
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FIGURE 1: Bar projection

FIGURE 2: Device projection

edge ρ̃e are calculated using Eqn. (9). End points of edge segments, xe0 and xe f , are found by:

xe0 = xi = cd + bi (10)
xe f = xi+1 = cd + bi+1. (11)

The densities of all the edges in the device are then merged using a p-norm approximation of the150

maximum density, as quantified in Eqn. (12):151

ρd(cd,p) =

 Ne∑
e=1

(ρ̃e(de(xe0 ,xe f ,p)))p


1
p

. (12)

After merging edge densities, all elements with centers inside the polygon are assigned ρd = 1. Elements152

with centers inside the polygon can be found using the MATLAB function inpoly(), or by using the153

algorithm described in Ref. [36].154

Finally, the density used in Eqn. (7) is calculated by merging densities of all bars and devices in155

Eqn. (13). In the temperature field solution, heat is being conducted between the devices and interconnects156

because the merged density field is used to calculate the stiffness matrix.157

ρi =

 Nq∑
q=1

(ρq(dq(xq0 ,xq f ,pi)))
p +

Nd∑
d=1

(ρd(cd,pi))p


1
p

. (13)

Section 2.2 introduces pipe elbows which form a smooth radius at the intersection of two straight158

segments. These curved pipe segments are used in the pipe flow model but are not modeled in the159

projection. The projection at the intersection of two segments is therefore an approximation based on the160

assumption of straight pipes with an elbow radius of zero.161

Devices may also add or remove heat from the domain. The projection in Eqn. (12) will be used to162
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model this effect. Rather than assuming a constant internal heat generation Q across all devices, each163

device will have its own Qd value. Element load vectors are then modified using this Qd and the device164

density.165

pe =

Nd∑
d=1

ρ
p
deQd

∫
Ωe

NdΩe =

Nd∑
d=1

ρ
p
deQdp0 (14)

The convection boundary condition term of Eqn. (6) is omitted again as it will not be scaled with density.166

2.2 Lumped parameter pipe flow model167

This section presents a lumped parameter pipe flow model for the pressure throughout the flow168

loop. Pressure is a factor that influences pump power consumption, which is important to reduce. The169

lumped parameter model uses empirical relations to approximate flow loop sections using only a small170

number of parameters [37]. The lumped parameter model is computationally inexpensive compared to171

computational fluid dynamics (CFD) models, and provides suitable accuracy (important properties for172

design optimization). The following assumptions have been made in the pipe flow model presented here:173

1. Flow is incompressible174

2. All components are connected in series with no branches175

3. Everything is in the same plane relative to ground (no height change)176

4. Flow rate at the inlet is known177

5. Flow is turbulent everywhere178

Most of these assumptions could be relaxed if more accuracy is desired, with the penalty of increased179

computational expense and more complex sensitivity analysis.180

We begin with Eqn. (15), which is derived in detail from an energy balance in Ref. [37]. Each term181

in this equation is formulated to have units of length. This equation relates head loss HL to pressure, P,182

and velocity, V , at points 1 and 2 in the flow loop.183

HL =
P1 − P2

ρw
+

V2
1 − V2

2

2g
(15)

Here, ρw is the weight density, and g is gravitational acceleration. Solving Eqn. (15) for the pressure184

difference (in terms of head) between two points produces:185

P1 − P2

ρw
= HL −

V2
1 − V2

2

2g
(16)

The flow rate in the system is known, so fluid velocity at any point can be calculated easily using:186

Vi =
Q
Ai
. (17)

Here, Q is the volumetric flow rate (uniform for a series flow loop), and Ai is the cross sectional area of187

the pipe at location i. Head loss is determined next, which is a proxy metric for energy loss between188

points 1 and 2 for reasons other than velocity change. Head loss, in units of length, is a standard metric189

used in describing flow system properties, including pump efficiency and system characterization curves190

[38]. Models for estimating head loss for many different pipe flow system components can be found in191
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Ref. [37], but here only two will be of interest: 1) losses due to friction between the fluid and pipe wall192

(sometimes called major loss), and 2) losses due to elbows connecting straight segments of pipe. Each193

straight segment of pipe and each elbow has a loss coefficient, K, assigned based on geometry. Total194

head loss for npe pipe elements in series can be calculated by combining the loss coefficients as follows:195

HL =
ẇ2

2gρ2
w

npe∑
i=1

Ki

A2
i

, (18)

where ẇ is the weight flow rate.196

The loss coefficient for a straight segment of pipe with length li and diameter di is:197

K s
i = fi

li

di
, (19)

and for an elbow with bend angle αi and bend radius ri the loss coefficient is:198

Ke
i = fiαi

ri

di
+ (0.1 + 2.4 fi) sin

(
αi

2

)
+

6.6 fi

(
sin

(
αi
2

)
+

√
sin

(
αi
2

)
+ εs

)
(

ri
di

)4αi/π
− fi

2lc

di
. (20)

See Fig. 3 for a description of elbow geometry. In Eqn. (20), a small perturbation εs has been added to
make the expression differentiable at α = 0. The first term in Eqn. (20) accounts for frictional losses
across the elbow arc length. The final term reduces the loss coefficient to account for the length of
straight pipe that is overlapped by the elbow, lc. Implementing loss coefficient calculations in this way
allows each pipe section to be modular. If the length of straight pipe were reduced directly at the straight
loss coefficient calculation, information about the connecting pipe and elbow would be needed. The bend
angle is found by defining two vectors—a and b—based on the endpoints of two connected segments:

a = xa f − xa0 (21)
b = xb f − xb0 . (22)

From the definition of the dot product, we obtain:199

θ = cos−1 (v) , (23)

where:200

v = (1 − εc)
a · b

||a||||b||
. (24)

A perturbation εc is incorporated into Eqn. (24) to restrict the range such that v ∈ [0, (1 − εc)]. This is201

done to prevent the derivative of θ from being undefined when v = 1. The angle α in Eqn. (20) is defined202

as the supplementary angle of θ:203

α = π − θ. (25)

The clipped length is calculated using:204

lc = ri

√
1 + v
1 − v

. (26)

The friction factor ( fi) appears in both loss coefficient equations. The friction factor is a function of205

Reynolds number, and can also account for pipe wall roughness. A variety of approximate models for206
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FIGURE 3: Pipe elbow geometry

friction factor have been developed based on experimental results. Here, the equation for turbulent flow207

in smooth pipes proposed by Blasius [39] is used to estimate fi:208

fi = 0.3164Re−0.25
i , (27)

with Reynolds number:209

Rei =
Vidiρm

µ
, (28)

where ρm is mass density and µ is fluid viscosity. The use of the thermal conductivity and pipe flow210

models in optimization will be discussed in the following section.211

3 Optimization problem and sensitivity analysis212

This section presents the optimization problem formulation, as well as derivations for the sensitivities213

needed to use gradient-based optimization methods. The models presented in Section 2 lead to a specific214

choice of design variables which will be discussed in this section. Furthermore, this set of design215

variables can be used to define geometric constraints which are needed to prevent interference between216

different components of the system.217

The system being optimized here consists of a number of devices and the interconnects routed218

between devices (see Figs. 6 or 11, for example).219

The goal is to find the optimal system layout. System layout is defined as the placement of the devices,220

the routing of device interconnects, as well as limited sizing parameters (such as interconnect diameter,221

assuming tubular connections between devices). Each device and interconnect are parameterized in a222

general manner to help simplify sensitivity calculations and support object-oriented code implementation.223

More complex devices and routing can be modeled without significant additional work due to the use of224

object-oriented programming.225

In addition to cd and bi introduced in Sec. 2, devices may have ports with location pi relative to226

the reference point. Ports are the required locations for interconnect attachment to each device. As the227

reference point moves, the polygon and ports will move with it. Device shape, size, and port location are228

held fixed during the optimization, so the only design variable for each device is cd. In some optimization229

studies, it may be useful to omit the reference point corresponding to a device from the set of optimization230

variables, holding the device fixed in a particular location. This can also be used to specify fixed inputs231

and outputs of the flow loop.232

Pairs of ports are connected via physical interconnects, and device connection topology is assumed233

to be given (and unchanging) here. Each interconnect is represented here using one or more straight234
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geometric segments. Increasing the number of segments in a connection supports consideration of235

approximately curved (and more complex) interconnect geometries, but increases computational expense.236

Interconnect segment i is associated with parameters for its start and end points, xi0 and xi f , respectively,237

as well as width, wi. All of these quantities are optimization variables.238

The models presented in Sec. 2 are reformulated in terms of the above parameterization to simplify
sensitivity calculation. A tradeoff, however, exists between ease of sensitivity calculation and problem
conditioning. Specifically, the connection between two interconnect segments, or a segment and a port,
present a challenge. As defined above, each system element has its own independent parameters, so
connections are free to be broken. There are two ways to solve this issue. The first method attempts to
enforce constraints between connected points. Such constraints could be implemented as either linear
equality or nonlinear inequality constraints, shown in Eqns. (29) and (30), respectively:

xi − x j = 0 (29)

(xi − x j)2 − ε ≤ 0, (30)

where xi and x j are copies of the same parameter across two different elements. Equation (30) constrains239

a norm of the parameter error to be within a tolerance ε, approximating the equality constraint in240

Eqn. (29).241

While this may be useful for use with optimization algorithms that do not support equality constraints,242

it can also help in cases where satisfaction of equality constraints is difficult and causes optimization243

algorithm convergence problems. Equation (30) is a relaxation of the original equality constraint. A244

small value of ε provides an accurate approximation, but can degrade problem conditioning. Using a245

large value of ε improves problem conditioning, but reduces solution accuracy. Replacing linear with246

nonlinear constraints can also impact computational expense. A related alternative remedy is to increase247

constraint satisfaction tolerances for these consistency constraints within optimization algorithm settings,248

but this may not be a practical approach in general. In numerical experiments performed for this study,249

the value of ε was observed to be a critical parameter to tune the balance between problem difficulty in250

satisfying constraints (problem stiffness or conditioning), while maintaining geometric consistency.251

A second approach to ensure geometric consistency is to define an implicit parameterization, making252

use of two design variable vectors: the expanded and reduced design variable vectors. Consider a system253

with nd devices and ns routing segments. The expanded design variable vector:254

z′ := [c1, ..., cnd ,x10 ,x1 f ,w1, ...,xns0 ,xns f ,wns]
T

contains all the parameters discussed above for each element in the layout. The reduced design variable255

vector contains only the reference points of free devices, c f
d , locations where routing segments meet,256

x f
i , and the width of each connection, wi. It is assumed that the width of all segments that connect two257

ports are the same (e.g., representing interconnects with uniform properties, such as electrical wiring or258

piping). The reduced design vector is then:259

z := [c f
1 , ..., c

f
ndf
,x f

1 , ...,x
f
ns f
,w1, ...,wnc]

T ,

where ndf is the number of free devices, ns f is the number of points where routing segments meet, and nc260

is the number of connections between pairs of ports. With these two vectors introduced, a mapping can261

be defined from the reduced to the expanded design variable vectors, defined in matrix form as:262

z′ = Mz + P (31)

whereM is a binary mapping (or selection) matrix. It is derived by identifying which elements of z and263
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z′ correspond to each other. The vector P represents fixed devices that are not in the reduced design264

variable vector, but have a fixed value throughout the optimization. Also, segment endpoints that are265

connected to device ports are mapped to the device reference point in the reduced design variable vector266

by including an offset corresponding to the port location pi. It should be noted that, in general, the267

mapping matrix is not invertible, so the inverse mapping based on Eqn. (31) may not be possible.268

This mapping preserves the simplified sensitivity calculations described above, while eliminating269

the need for consistency constraints. All calculations of objective functions and constraints, and their270

sensitivities, are performed in terms of the expanded design variable vector. Next, the sensitivities are271

computed in terms of the reduced design variables by using the chain rule:272

d f
dz

=
∂ f
∂z′

dz′

dz
, (32)

273
dz′

dz
= M . (33)

The reduced design variable vector is used as the optimization vector by the solution algorithm. To274

maintain correspondence between reduced and expanded vectors, the mapping defined in Eqn. (31) is275

applied each time the reduced design variable vector is updated.276

Now that the parameterization of the design space has been determined, the complete optimization
problem formulation can be presented:

min
x

f (x,T ) (34a)

s.t.: gphys(x,T ) ≤ 0 (34b)
gdd(x) ≤ 0 (34c)
gsd(x) ≤ 0 (34d)
gss(x) ≤ 0 (34e)

where: K(x)T = P (x) (34f)

Here f (x,T ) is the objective function and g(x,T ) are constraint functions. In general, these functions277

may depend both on design (x) and state (T ) variables. The function f (·) can be any one of the candidate278

objectives discussed later in Sec. 3.1. The constraints gphys(x,T ) are constraints that depend both on279

design and on solutions to the physics models (i.e. the value of the state vector T ). The interference280

constraints gdd(x), gsd(x), and gss(x) prevent interference between two devices, one routing segment and281

one device, and two routing segments, respectively. These constraints are independent of any physics282

models, so they are all explicit functions of the design variables.283

3.1 Objective function and physics-based constraints284

This section presents objective function options and their derivatives. Objective functions and285

physics-based constraints are discussed together because they both depend on design and state variable286

values. In addition, these functions are interchangeable as either objective or constraint functions.287

The first candidate function, f1(·), relates to the solution of the lumped-parameter flow model:288

f1(x,T ) = HL (35)

The objective is to minimize the head loss (HL) in the flow loop as calculated in Eqn. (18). When head289

loss is used as an objective or constraint, the radius of each pipe elbow is also included a design variable.290

The elbow radii ri are appended to the end of expanded and reduced design vectors (with a one-to-one291
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mapping). The total derivative using the chain rule is:292

dHL

dx′ =
∂HL

∂x′ +

npe∑
i=1

∂HL

∂Ki

dKi

dx′ . (36)

The design variable vector contains device reference point coordinates, bar end coordinates, bar293

widths, and elbow radii. For each routing segment, the pipe diameter will be equal to the bar width. The294

only nonzero elements of the explicit derivative ∂HL/∂x
′ are those corresponding to bar width:295

∂HL

∂di
= −

πdiẇ2

2gρ2
wA2

i

npe∑
i=1

Ki (37)

For each lumped parameter element, whether a straight section or elbow, the following equation applies:296

∂HL

∂Ki
=

1
A2

i

ẇ2

2gρ2
w
. (38)

The final derivative in Eqn. (36), dKi/dx′, depends whether the element is a straight or elbow section.
For a straight section, design variables are segment end points, xi0 and xi f , and segment diameters di.
The sensitives are given below:

dK s
i

dxi0
=

fi

dili
(xi0 − xi f ) (39)

dK s
i

dxi f

=
fi

dili
(xi f − xi0) (40)

dK s
i

ddi
= −

fili

d2
i

+
li

di

d fi

ddi
(41)

297
d fi

ddi
= 0.25(0.3164)Re−1.25 4ṁ

πµd2
i

. (42)

If the lumped parameter element is an elbow, the design variables are the four end points of connected298

segments, xa0 , xa f , xb0 , and xb f , diameter, di, and radius of the elbow, ri. It is assumed that the diameters299

of connected segments are the same so there is only one diameter variable. The sensitivity of the elbow300

loss coefficient with respect to pipe diameter is:301

dKe
i

ddi
=
∂Ke

i

∂di
+
∂Ke

i

∂ fi

d fi

ddi
. (43)

Equation (42) can be used again here. The partial derivatives are:

∂Ke
i

∂di
= − fiαi

ri

d2
i

+ 6.6
(
4αi

π

)
fi

sin
(
αi

2

)
+

√
sin

(
αi

2

)
+ εs

 r(−4αi/π)d(4αi/π)−1 + fi
2lc

d2
i

(44)

∂Ke
i

∂ fi
= αi

ri

di
+ 2.4 sin

(
αi

2

)
+

6.6
(
sin

(
αi
2

)
+

√
sin

(
αi
2

)
+ εs

)
(

r
d

)4αi/π
−

2lc

di
(45)
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With respect to elbow radius, the sensitivity is:302

dKe
i

dri
= fiαi

1
di
− 6.6

4αi

π
fe

sin
(
αi

2

)
+

√
sin

(
αi

2

)
+ εs

 r(−4αi/π)−1d(4αi/π)
−

2 fi

di

dlc

dri
. (46)

The chain rule can be used to calculate sensitivities with respect to the four segment end points:

dKe
i

dxa0

=
∂Ke

i

∂αi

dαi

dxa0

−
2 fi

di

dlc

dxa0

, (47)

with:

∂Ke
i

∂αi
= fi

ri

di
+

1
2

(0.1 + 2.4 fe) cos
(
αi

2

)
+

26.4
π

fi

sin
(
αi

2

)
+

√
sin

(
αi

2

)
+ εs

 (d
r

)(4αi/π)

ln
(
d
r

)

+ 6.6 fi

(
d
r

)(4αi/π)
1

4
1√

sin
(
αi
2

)
+ εs

cos
(
αi

2

)
+

1
2

cos
(
αi

2

) . (48)

The derivatives of angle α are:303

dαi

dxa0

=
∂αi

∂v
dv

dxa0

, (49)

with:304

∂αi

∂v
=

1
√

1 − v2
. (50)

The required derivatives of the clipped length are as follows:305

dlc

dri
=

√
1 + v
1 − v

(51)

306

dlc

dxa0

=
∂lc

∂v
dv

dxa0

(52)

where:307

∂lc

∂v
=

ri

(1 − v)2

√
1 − v
1 + v

. (53)

The calculations in Eqns. (49) and (52) require derivatives of v with respect to the four bar end points:

dv
dxa f

= −
dv

dxa0

= (1 − εc)
[

b

||a||||b||
−

1
||a||3||b||

(a · b)a
]
, (54)

dv
dxb f

= −
dv

dxb0

= (1 − εc)
[

a

||a||||b||
−

1
||a||||b||3

(a · b)b
]
. (55)

A second objective function option is to minimize one of the device temperatures. Temperature at the308

device center is used here, so the objective function is:309

f2(x,T ) = T (cd). (56)

Jessee, et al. 12



This depends on the solution of the thermal conduction physics problem. Sensitivities of functions310

depending on solution of a finite element problem can be calculated using the adjoint method [40]:311

d f2

dx′i
=
∂ f2

∂x′i
+ ΨT dR

dx′i
, (57)

where Ψ is the adjoint vector, which can be calculated with the following equation:312

Ψ =

[
∂R

∂y

]−T [
∂ f2

∂y

]T

. (58)

The residualR comes from manipulating Eqn. (4) so that one side is zero:313

R = KT − P = 0 (59)

The vector y in Eqn. (58) is the unknown vector. In the finite element problem the unknowns are314

y = [P p,T f ]T . The vector P p is the flux at nodes where prescribed temperature boundary conditions315

are applied, and T f are temperatures at all remaining nodes. Equation (59) is partitioned into blocks,316

p and f , corresponding to the prescribed and free (unknown) degrees of freedom, respectively. The317

derivative of the residual with respect to the unknown vector results in a partitioned matrix:318 [
∂R

∂y

]
=

[
−I K p f

0 K f f

]
. (60)

The temperature at an arbitrary location in the domain needs to be calculated by interpolation from nodal319

temperatures:320

T (cd) = N T (ξ, η)Tel, (61)

where ξ and η are the location of cd in the local element coordinate system, and Tel is the vector of321

element nodal temperatures. The only nonzero derivative with respect to design variables x′ is for the322

device reference point. Using the definition of the matrixB = dN/dx, explicit derivatives of f2(·) can323

then be calculated:324

∂ f2

∂x′
= BTTel (62)

325

∂ f2

∂y
= N (ξ, η) (63)

The derivative of the residual with respect to design variables is calculated using the chain rule.326

dR
dx′i

=
∂R

∂ρe

dρe

dx′i
(64)

Finally, taking into account Eqns. (4) and (5), the total derivative is:327

d f2

dx′i
=
∂ f2

∂x′i
+

Ne∑
e=1

p(1 − ρmin)ρ(p−1)
e ΨT

e k0 Te
dρe

dx′i
+

Nd∑
d=1

Qd

Ne∑
e=1

pρ(p−1)
de ΨT

e p0
dρde

dx′i
, (65)

where Ne is the number of finite elements in the mesh, ρe is the element density from Eqn. (13), ρde328

is the device element density from Eqn. (12), and Ψe and Te are the adjoint and temperature vectors329

corresponding to element degrees of freedom.330

The derivative of the geometric projection is the final part of Eqn. (65). The derivative of density331
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resulting from the merge in Eqn. (13) is:332

dρ
dx′i

=

Nq∑
q=1

(
ρq

ρ

)p−1 dρq

dx′i
+

Nd∑
d=1

(
ρd

ρ

)p−1 dρd

dx′i
. (66)

See Ref. [32] for derivatives with respect to bar ends. For devices, the derivative with respect to device333

centers must be calculated using:334

dρd

dcd
= ρ

1−p
d

Ne∑
e=1

(ρ̃e)p−1 ∂ρ̃e

∂cd
, (67)

where:335

∂ρ̃e

∂cd
=

∂ρ̃e

∂xe0

∂xe0

∂cd
+
∂ρ̃e

∂xe f

∂xe0

∂cd
. (68)

Derivatives with respect to edge ends can again be found in Norato et al. [32], and appear here as336

∂ρ̃e/∂xe0 and ∂ρ̃e/∂x f0 . From the definition of edge endpoints in Eqn. (10) and (11), derivatives ∂xe0/∂c337

and ∂xe0/∂c are the identity matrix. The density derivative of any element inside the device polygon is338

set to ∂ρd/∂c = 0. To justify making the sensitivity of interior elements zero, imagine perturbing the339

center of the device by a small amount. Most elements inside the polygon are still inside the polygon, so340

there is no change in the density. Some elements near the edges may have switched from being inside341

the polygon to in the edge bar, or vice versa. These elements will be near the bar center and should still342

have full density.343

3.2 Geometric constraints344

The interference constraint functions will be presented below along with sensitivity analysis. Any345

constraint involving a device is not enforced on the device boundary, but on a bounding circle with radius346

rb centered at the device reference point, see Figs. 4a or 4b. The radius can be found by calculating the347

maximum vertex distance from the device reference point. The constraint between two devices i and j,348

and its sensitivity, are shown below (see also Fig. 4a for an illustration of the constraint).349

gdd(x) = (rb
i + rb

j )
2 − ||c j − ci||

2 ≤ 0 (69)

dgdd

dci
= 2(c j − ci) (70)

dgdd

dc j
= −2(c j − ci) (71)

For the constraint between a device i and a segment of routing j, we will use previous results from350

projecting a bar onto the mesh. As an intermediate step in the projection, the distance between a line351

segment and a point was found. Here, the distance will be found between the line segment and a device352

reference point rather than a mesh element center. The constraint function is:353

gsd =
w j

2
+ rb

i − di j ≤ 0. (72)

Sensitivities ddi j/dx j0 and ddi j/dx j f are already known from previous results, as well as dgsd/dw j = 1
2 .354

The device reference point is a design variable, whereas the element centers were not design variables in355
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(a) Constraint between two de-
vices (b) Constraint between a device

and routing segment
(c) Constraint between two routing
segments

FIGURE 4: Geometric constraints

previous results, so an additional sensitivity needs to be calculated:356

ddi j

dci
=


b
||b||

a · b ≤ 0
1
||g||

(
I − 1

||a||2
(a ⊗ a)

)
g 0 < a · b < a · a

e
||e||

a · b ≥ a · a.

(73)

A constraint to prevent interference between two routing segments requires finding the distance between357

two line segments. Reference [41] describes an algorithm for calculating the distance between two line358

segments. First, the two segments are extended into infinite lines, and the minimum distance is found. If359

the minimum occurs at a point on the line outside of the segment endpoints, then a series of cases must360

be tested to find the distance between endpoints and the other segment. MATLAB code to compute the361

minimum distance between two segments, and the derivative with respect to the segment endpoints, is362

included in the Appendix. The constraint to avoid interference between routing segments a and b with363

minimum distance dab between them is:364

gss =

(wa

2
+

wb

2

)2
− d2

ab ≤ 0. (74)

The squared distance is used to avoid undefined derivatives when the distance is zero. The sensitivity365

with respect to segment end points can be found in the MATLAB code in the Appendix. Sensitivity with366

respect to the bar widths are:367

dgss

dwa
=

dgss

dwb
=

(wa

2
+

wb

2

)
. (75)

4 Results368

The above method will be used to optimize the device layout and interconnect routing of two369

different systems. The first system consists of three identical devices connected in a loop. A comparison370

of the results using three different objectives functions will be made. A second system with unique371

devices and fixed input and output locations will be optimized. Both the system architecture and the372

geometric topology of the system are fixed during the optimization of both of these examples. The373

system architecture specifies what ports on which components are connected to specific ports on other374

components within the system. For each system architecture, many geometric topologies may exist; e.g.,375
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FIGURE 5: Boundary condition for thermal finite element analysis

if an interconnect links ports A and B, many options may exist for how this interconnect passes around376

various other interconnects and devices in the system. Exploring all possible geometric topologies for377

a single system architecture becomes exponentially more complex as the number of devices increases.378

Generating and selecting distinct geometric topologies is a topic of ongoing work, and is beyond the379

scope of this article. Boundary conditions for the thermal problem will be the same for both systems. Top380

and bottom edges of the domain will have convection boundary conditions with a convection coefficient381

of h = 35.4 W/(m2K) and environment temperature of 0 °C. The right edge has a fixed temperature of 100382

°C, and the left edge is insulated. The MATLAB sequential quadratic programming (SQP) optimization383

solver was used for all solutions presented below.384

The system with the initial condition depicted in Fig. 6 was optimized according to three different
objective functions. The system has three 0.06 m × 0.06 m square devices, each generating 3,000
W/m2 of heat. The devices are connected in a loop. Each connection has one free intersection point. A
short fixed pipe segment is attached to each port. This allows constraints between devices and all free
pipe segments to be enforced. The thermal conductivity of the solid material is 54 W/(mK), and 0.032
W/(mK) is used for void, resulting in ρmin = 5.86 × 10−4. The domain for the optimization is 0.5 m × 0.5
m. A projection radius of 2.36 mm, circumscribing the finite element, was used, and the penalization
parameter was 3. Properties of fluid flow in the loop are listed in Table 1. Three optimization studies
were completed: Tests A, B, and C. The objective of Test A is to minimize head loss in the loop. The
problem statement is:

min
x

f (·) = Hl (76a)

subject to: T (c1),T (c2),T (c3) ≤ Tc (76b)
ggeo ≤ 0 (76c)

where: K(x)T = P (x). (76d)
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FIGURE 6: Initial system layout for test A, B, and C. Device numbers shown. Blue diamonds are design
variable locations.

Test B minimizes the temperature of device 3, and the problem statement is:

min
x

f (·) = T (c3) (77a)

subject to: T (c1),T (c2) ≤ Tc (77b)
Hl ≤ Hlc (77c)
ggeo ≤ 0 (77d)

where: K(x)T = P (x). (77e)

The problem statement for Test C, minimizing the system bounding box area, is:

min
x

f (·) = (max(x̄) −min(x̄))(max(ȳ) −min(ȳ)) (78a)

subject to: T (c1),T (c2),T (c3) ≤ Tc (78b)
Hl ≤ Hlc (78c)
ggeo ≤ 0 (78d)

where: K(x)T = P (x). (78e)

Where x̄ and ȳ are the set of x and y coordinates of device reference points and bar segment end points.385

The critical device temperature, Tc, for all three devices is 30 °C. Head loss constraints, Hlc , of 4 m and386

5 m will be used to quantify the effect of this constraint on the outcome. Here all geometric constraints387

from Sec. 3.2 have been lumped together into ggeo. The function in Eqn. (78a) represents a rectangular388

bounding box containing all free devices and interconnects that is aligned with the x and y axes.389

min
x

A(·) (Objective: Bounding box area)

subject to: Tdi=1...4 ≤ Tdmax (Max. device temp. constraint)
Tf ≤ Tfmax (Max. fluid temp. constraint)
Hl ≤ Hlc (Max. head loss constraint)
ggeo ≤ 0 (Geometric constraints)

where: K(x)T = P (x). (Physics-based model eqns.)

The minimum head loss for optimization problem Test A is 2.063 m with the layout shown in Fig. 7.390
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symbol value

density ρm 1072 kg/m3

viscosity µ 0.068 kg/(m s)
flow rate Q 0.001 m3/s
max pipe diameter - 0.02 m

TABLE 1: Fluid flow properties

Table 2 compares the sensitivities of the temperature constraints using the adjoint method and finite391

difference method. The sensitivities were obtained from the 53rd iteration (close to optimal solution) of392

the optimization problem in Fig. 7. A total of nine sensitivities are compared. They are sensitivities of393

each of the three temperature constraints with respect to three different design variables.394

To satisfy device temperature constraints, one of the routing interconnects touches the convection395

boundary. This conducts heat from the devices through the routing to the boundary where it can be396

dissipated. The optimization finds a balance between smooth bends and reducing pipe length to reduce397

head loss in a way that is best for system performance. A multi-start approach was used in test A of the398

first example to improve the probability of finding global optima. As shown in Fig. 8, we use six initial399

layouts (with different device locations and interconnect nodal positions) of which five converged to a400

feasible solution. The five that converged had the same layout of devices and interconnects. There were401

two differences between the different optimal solutions. One is whether the layout connected to the top402

or bottom boundary; since the boundary conditions are symmetric, these two solutions are functionally403

identical. The second difference is the horizontal location of the layout. The objective function changes404

slightly when the layout is moved along the boundary. It appears that the solution can get stuck in a405

local optima based on where the interconnect initially touches the boundary. It is also possible that if the406

convergence tolerance is reduced, the solutions all may converge to the same solution. As discussed in the407

problem definition, determining starting points for the optimization, including device layouts, geometric408

topologies, and interconnect route shapes, is a complex problem which requires more investigation.409

Table 3 contains the objective function values for Test B with two different head loss constraint410

values. The optimal layouts are shown in Fig. 9. Both layouts have an interconnect touching the top411

boundary to dissipate heat from devices. The layout for the 4 m head loss constraint requires smoother412

elbows, which comes at the expense of a higher device 3 temperature. More specifically, device 3 has413

a 80.4% higher temperature than the system with a 5.0 m head loss constraint when a 4.0 m head loss414

constraint is used. Results of Test C are given in Table 4, and the corresponding final layout designs are415

shown in Fig. 10. Both layouts are similar, except that the system with the 5.0 m head loss constraint can416

pack the devices closer together by taking advantage of sharper bends. The result is a 16.6% increase417

in the bounding box area for the system when a 4.0 m head loss constraint is applied. Each objective418

function produces significantly different optimal layouts. This highlights the importance appropriate419

objective function selection.420

A notional power electronics cooling system for an unmanned aerial vehicle (UAV) was optimized421

using the method presented above. The initial system layout is depicted in Fig. 11, and corresponding422

device properties are given in Table 5. The system consists of two battery packs, an AC/DC converter,423

and a heat exchanger. The battery packs and AC/DC converter add heat to the system, and the heat424

exchanger removes heat. A fixed-location inlet and outlet for the fluid loop are placed on the left edge.425

Boundary conditions and flow properties are same as the first problem, except the domain has been426

enlarged to 1 m × 1 m to allow space for more components. The maximum pipe diameter is also427

increased to 0.03 m. There are two free points in each connection to allow for more complex interconnect428

routing paths. The optimization was solved using both head loss and bounding box objective functions.429
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1

2

3

FIGURE 7: Optimal layout of Test A

Analytical sensitivities Finite difference sensitivities Relative errors

-0.000001089314857 -0.000001089314955 8.996x10−8

-0.000201888612579 -0.000201888612558 -1.040x10−10

-0.000128819188526 -0.000128819188535 6.987x10−11

-0.000015775640565 -0.000015775640533 -2.028x10−9

-0.000000314345463 -0.000000314345463 0.0
0.0000000005125052 0.0000000005125089 -7.219x10−6

-0.000006785843214 -0.000006785843276 9.137x10−9

-0.000005674234221 -0.000005674234272 8.988x10−9

-0.000053662559067 -0.000053662559068 1.863x10−11

TABLE 2: Comparison of analytical and finite difference sensitivities for device temperature constraints.
The sensitivities are obtained from the 53rd iteration of the optimization problem presented in Fig. 7.
Sensitivities for each of the three temperature constraints with respect to three different design variables
are presented.

FIGURE 8: Six different initial layouts (first row) for Test A with simple head loss objective function and
their corresponding final layouts (second row) along with their objective function values.

Jessee, et al. 19



Head Loss (m) objective (°C) % increase

≤ 5 10.16 -
≤ 4 18.33 80.4

TABLE 3: Results of Test B

1

2

3

(a) 5 m head loss constraint

1

2

3

(b) 4 m head loss constraint

FIGURE 9: Final layouts for Test B.

Head Loss (m) objective (m2) % increase

≤ 5 0.0156 -
≤ 4 0.0182 16.6

TABLE 4: Results of Test C

1

2

3

(a) 5 m head loss constraint

1

2

3

(b) 4 m head loss constraint

FIGURE 10: Final layouts for Test C.
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FIGURE 11: Initial layout of power electronics cooling system

Device number Description Qd (W/m2) Tmax (°C)

1 Battery 5000 30
2 Battery 5000 30
3 AC/DC converter 1000 70
4 Heat exchanger -2000 -

TABLE 5: Device properties

Both optimization problems enforce device temperature constraints as described in the device properties430

table. In addition, the optimization for minimizing the bounding box had a head loss constraint of 1.5 m.431

Resulting layouts are shown in Fig. 12, and some corresponding values from the final layouts are listed432

in Table 6. The objective function and first order optimality value history for the two optimizations are433

shown in Figs. 13 and 14. In the head loss optimization, device 1 and 2 temperature constraints were434

active. In the bounding box optimization, the head loss constraint and the device 1 temperature constraint435

were active. As expected, using sharp angles at the elbows enables designs with smaller bounding boxes.436

The head loss objective layout has a higher total piping length, but lower head loss. This suggests that437

elbow geometry is the dominant contributor to head loss.438

1 2

3

4

(a) Optimal layout for pressure ob-
jective

4

1 2

3

(b) Optimal layout for bounding
box objective

FIGURE 12: Optimal layouts of power electronics cooling system
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FIGURE 13: Objective function value and first order optimality condition value for pressure objective

FIGURE 14: Objective function value and first order optimality condition value for bounding box objective
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objective Hl (m) bounding box (m2) T1 (°C) T2 (°C) T3 (°C)

head loss 0.876 0.711 30.0 30.0 27.3
bounding box 1.50 0.311 30.0 22.9 17.2

TABLE 6: Power electronics cooling system optimization results. Objective function values are high-
lighted in gray.

5 Discussion439

The above examples demonstrate our technique for simultaneous optimization of device placement440

and interconnect routing. Starting from the initial condition, both the devices and interconnects move441

through the domain in search of a locally-optimal solution. A multi-start approach was used in test A442

of the first example to improve the probability of finding global optima. As discussed in the problem443

definition determining starting points for the optimization is a complex problem which requires more444

investigation. Connections in the flow loop are maintained throughout the optimization by using the445

mapping method described in section 3, and interference between components is prevented via geometric446

constraints. In addition to finding a physically-feasible solution, this technique accounts for physics447

considerations. Here we have used 1D lumped parameter and 2D finite element physics models in448

the calculation of objective functions and constraints. The above results indicate that using these449

physics-based comparison metrics do indeed influence optimal system layouts. Incorporating physics450

modeling within the optimization has several potential benefits. It enables discovery of solutions that451

more accurately reflect realistic system design needs compared to methods that use only geometric452

metrics. In addition, incorporating these more comprehensive models into early-stage design phases453

can help reduce the number of overall design cycle iterations, revealing possibly important physics and454

design interactions before embarking on detailed design or prototyping.455

As presented here, this technique can be used successfully for generating optimal layouts of systems456

that are well-approximated in 2D space. This is an important step beyond previous work by combining457

layout, routing, and physics into a single problem, but is a starting point for important additional458

capabilities in solving more comprehensive related problems. In previous work, most studies treated459

device layout and interconnect routing separately, and also separated the geometric layout optimization460

from physics-based system evaluation. Several fundamental advances are needed beyond what is461

presented here to more completely address pressing needs identified across a range of related industries.462

For example, a number of assumptions were made here, as described in Section 2.2; relaxing these463

assumptions (e.g., coupling between 1D and 2D physics) will lead to solutions that more accurately464

reflect real design intent, but will introduce computational challenges. Notably, these couplings may465

result in nonlinearities which would complicate the strategies presented here. Increasing the complexity466

of the 2D design space, such non-convex or disconnected domains and allowing devices to rotate, should467

be explored. In addition, this paper has demonstrated some important aspects of modeling these type468

of systems, such as preventing interference between devices and routing, modeling devices of complex469

shape, and implementing constraints based on physics models in multiple dimensions. Most notably,470

transitioning to 3D packing and routing problems will introduce fundamentally new challenges that do471

not exist in the 2D problem, such as a vast space of distinct geometric topologies that must be explored.472

Other creative formulation and solution strategies may be required for these more complete problems.473
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6 Conclusion474

A novel method for simultaneously optimizing the 2D placement of devices and the device in-475

terconnect routing paths was presented. Physics-based objectives and constraints were incorporated476

into the optimization problem, in addition to geometric constraints preventing interference between477

components. Both 1D lumped parameter and 2D finite element physics models can be used within a478

single optimization problem. A geometric projection of arbitrary polygons, as well as required sensitivity479

calculations, were presented that support optimization based on a finite element mesh. A set of design480

variables was developed that links directly to both physics models and geometric functions. By using a481

mapping between expanded and reduced design variables, sensitivities can be calculated more easily,482

and connections between interconnect segments are enforced without requiring additional constraints.483

The method was first used to optimize a simple three-device system according to different objective484

functions. Each objective function resulted in a significantly different optimal layout. This highlights the485

need for the system designer to understand which aspects of the system are important when developing486

the optimization problem formulation. A second system with fixed interaction points, complex device487

shapes, and more routing segments was then optimized. These features are all useful in designing a real488

device-routing system. The method presented here could lead to faster development of systems, which489

are smaller and perform better than those designed by conventional design methods.490
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A Distance between segments MATLAB code595

596

f u n c t i o n [ s q D i s t , dd_dx ] = s q D i s t a n c e ( xa0 , xaf , xb0 , xbf )597

%s e g m e n t D i s t a n c e c a l c u l a t e s minimum squared d i s t a n c e be tween598

% two l i n e s e g m e n t s599

% xa0 , x a f − end p o i n t s o f f i r s t segment − row v e c t o r600

% xb0 , x b f − end p o i n t s o f second segment − row v e c t o r601

% r e t u r n s dd_dx i n o r d e r [ xa0 , xa f , xb0 , x b f ]602

603

dim = s i z e ( xa0 , 2 ) ;604

I = eye ( dim , dim ) ;605

z = z e r o s ( dim , dim ) ;606

607

u = x a f − xa0 ;608

dudx = [− I I z z ] ;609

v = xbf − xb0 ;610

dvdx = [ z z − I I ] ;611

w = xa0 − xb0 ;612

dwdx = [ I z − I z ] ;613

a = u*u ’ ;614

b = u*v ’ ;615

c = v*v ’ ;616

d = u*w’ ;617

e = v*w’ ;618

dadx = 2*u* dudx ;619

dbdx = v* dudx + u* dvdx ;620

dcdx = 2*v* dvdx ;621

dddx = w* dudx + u*dwdx ;622

dedx = w* dvdx + v*dwdx ;623

624

D = a *c−b ^ 2 ;625

dDdx = a * dcdx + c * dadx − 2*b* dbdx ;626

627

sD = D;628

tD = D;629

dsddx = dDdx ;630

d tddx = dDdx ;631

632

eps = 1e −5; % t o l e r a n c e f o r n e a r l y p a r a l l e l633

i f D < eps634

% s e g m e n t s are n e a r l y p a r a l l e l635

sN = 0 ;636

sD = 1 ;637

tN = e ;638

tD = c ;639

dsndx = z e r o s ( 1 , 4 * dim ) ;640
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dsddx = z e r o s ( 1 , 4 * dim ) ;641

d tndx = dedx ;642

d tddx = dcdx ;643

e l s e644

sN = ( b*e−c *d ) ;645

tN = ( a *e−b*d ) ;646

dsndx = e * dbdx + b* dbdx − d* dcdx − c * dddx ;647

d tndx = a * dedx + e * dadx − d* dbdx − b* dddx ;648

i f sN < 0649

sN = 0 ;650

tN = e ;651

tD = c ;652

dsndx = z e r o s ( 1 , 4 * dim ) ;653

d tndx = dedx ;654

d tddx = dcdx ;655

e l s e i f sN > sD656

sN = sD ;657

tN = e+b ;658

tD = c ;659

dsndx = dsddx ;660

d tndx = dedx + dbdx ;661

d tddx = dcdx ;662

end663

end664

665

i f tN < 0666

tN = 0 ;667

d tndx = z e r o s ( 1 , 4 * dim ) ;668

i f −d < 0669

sN = 0 ;670

dsndx = z e r o s ( 1 , 4 * dim ) ;671

e l s e i f −d > a672

sN = sD ;673

dsndx = dsddx ;674

e l s e675

sN = −d ;676

sD = a ;677

dsndx = −dddx ;678

dsddx = dadx ;679

end680

e l s e i f tN > tD681

tN = tD ;682

d tndx = d tddx ;683

i f (−d+b ) < 0684

sN = 0 ;685

dsndx = z e r o s ( 1 , 4 * dim ) ;686

e l s e i f (−d+b ) > a687

sN = sD ;688
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dsndx = dsddx ;689

e l s e690

sN = −d + b ;691

sD = a ;692

dsndx = −dddx + dbdx ;693

dsddx = dadx ;694

end695

end696

697

i f abs ( sN ) < eps698

sC = 0 ;699

dscdx = z e r o s ( 1 , 4 * dim ) ;700

e l s e701

sC = sN / sD ;702

dscdx = ( 1 / sD )* dsndx − ( sN / ( sD ^ 2 ) ) * dsddx ;703

end704

705

i f abs ( tN ) < eps706

tC = 0 ;707

d t c d x = z e r o s ( 1 , 4 * dim ) ;708

e l s e709

tC = tN / tD ;710

d t c d x = ( 1 / tD )* d tndx − ( tN / ( tD ^ 2 ) ) * d tddx ;711

end712

713

dP = w+( sC*u ) −( tC *v ) ;714

dPdw = I ;715

dPdu = sC* I ;716

dPdv = −tC * I ;717

dPdsc = u ’ ;718

dPd tc = −v ’ ;719

ddP_dx = [ dPdw dPdu dPdv dPdsc dPd tc ] * [ dwdx ; dudx ; dvdx ; dscdx ; d t c d x ] ;720

s q D i s t = dP*dP ’ ;721

dd_dx = 2*dP* ddP_dx ;722

end723
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