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Abstract In this work we introduce a method to incorporate stress considerations in the topology optimization of
heterogeneous structures. More specifically we focus on using functionally graded materials (FGMs) to produce
compliant mechanism designs that are not susceptible to failure. Local material properties are achieved through
interpolating between material properties of two or more base materials. Taking advantage of this method, we
develop relationships between local Young’s modulus and local yield stress, and apply stress criterion within
the optimization problem. A solid isotropic material with penalization (SIMP) based method is applied where
topology and local element material properties are optimized simultaneously. Sensitivities are calculated using an
adjoint method, and derived in detail. Stress formulations implement the von Mises stress criterion, are relaxed in
void regions, and are aggregated into a global form using a p-norm function to represent the maximum stress in
the structure. For stress-constrained problems we maintain local stress control by imposing m p-norm constraints
on m regions rather than a global constraint. Our method is first verified by solving the stress minimization of
an L-bracket problem, and then multiple stress-constrained compliant mechanism problems are presented. Re-
sults suggest that good designs can be produced with the proposed method and that heterogeneous designs can
outperform their homogeneous counterparts with respect to both mechanical advantage and reduced stress con-
centrations.

Keywords Topology Optimization · Functionally Graded Materials · Stress-Based design · Compliant
Mechanism · Heterogeneous Structures

1 Introduction

Compliant mechanisms are commonly used as alternatives to traditional rigid link and pin joint mechanisms
due to their various advantages such as reduced weight, reduced wear, and built-in restoring force. They also
require no lubrication and no assembly. Compliant mechanisms achieve movement through bending of flexural
members rather than rotation about pin joints, and as such they often comprise a single body. However to achieve
this movement these mechanisms require the use of thin hinge-like compliant joints. These regions produce stress
concentrations which limit the applicability of compliant mechanisms to low-load applications [32].

Topology optimization has been used extensively for compliant mechanism design since it was first proposed
in [3]. This study used a Solid Isotropic Material with Penalization (SIMP) method but there has since been nu-
merous compliant mechanism studies using different formulations such as the level set method [13,14,15], and
sequential element rejection and admission (SERA) method [12]. There has also been a focus on heterogeneous
material mechanisms where multiple materials are used to create a desired performance. Sigmund [17] used a
SIMP based approach where each element in the design domain has two independent design variables which
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formulate a power-law with Hashin-Shtrikman interpolation scheme. Later Gaynor et al. [20] used a similar muti-
phase SIMP method to produce two-material designs that were prototyped via 3D printing and experimentally
verified. Yin et al. [18] used a density based peak function interpolation which requires only one design variable
per element. Wang et al. and Alonso et al. implemented a level-set method [19] and a SERA method [16], respec-
tively which were both applied to multi-material compliant mechanism designs.

By using multiple materials it is possible to reduce stress concentrations, however when discrete materials
are used a stress concentration can be produced across the interface between materials [21]. Functionally graded
materials (FGMs) are an alternative to using multiple discrete materials. FGMs are heterogeneous materials whose
properties can vary based on spatial position, and can create a tailored gradation between two different materials
[34]. This gradation is created by varying composition and microstructure with position, which can be represented
as the mixing of two (or more) materials with different material properties [24]. By tailoring the gradation between
materials in a structure, one can also tailor the material properties of the structure at a local level. This versatility
of FGM designs makes them a perfect candidate for optimization problems. However, stress criteria are often not
considered in the optimization of FGM design problems. As the material properties and micro-structure vary at a
local level, yield stress in the structure will also vary at a local level.

In the literature there are some examples of topology optimization for FGM compliant mechanisms. Carbonari
et al. [25,26] produced piezoelectric actuator designs using FGMs modelled as a mix of piezoelectric and non-
piezoelectric materials. This study used a density based material interpolation scheme for heterogeneous materials
based on finite element shape functions, a method first introduced by Matsui and Terada [27]. Conlan-Smith et
al. [1] developed a SIMP-based formulation for modelling FGMs in topology optimization problems. Here each
element in the domain had two variables – one for topology optimization and another for material optimization.
The local Young’s modulus was derived from an equation relating the two independent variables and was similar
to 3-phase topology optimization for discrete material distribution presented in [22,23].

There has been significant work in the past to develop methods of topology optimization that account for
stress considerations. Duysinx and Bendsøe [4] implemented relaxed local stress constraints for porous composite
materials based on the SIMP method. Implementing local stress constraints requires a large number of constraint
functions which results in a high computational cost. Duysinx and Sigmund [5] extended this method into a single
global constraint function using p-norm and p-mean functions. Parı̀s et al. [30] and Le et al. [6] presented methods
that imposed regional stress constraints to maintain control over local stresses without the increased computa-
tional cost. Lee et al. [7] applied stress-based topology optimization to design dependant loading problems. Stump
et al. [28] introduced a method of topology optimization for creating FGM distributions with a tailored von Mises
stress field. Lipton has applied homogenization-based methods to the design of functionally graded and composite
structures subject to stress constraints [46,47]. De Leon et al. [36] implemented a SIMP approach with a projec-
tion method and p-norm function to design compliant mechanisms which are not susceptible to failure. Chu et al.
[35] developed a stress-based level set method for designing multi-material compliant mechanisms. These prob-
lems were solved using a multi-objective optimization method incorporating output displacement and compliance.

The authors previously found that FGM mechanisms can produce higher mechanical/geometric advantages
compared to homogeneous and two material mechanisms as outlined in [1]. Additionally, this study compared the
stress distributions in each design and found that increased mechanical performance also incurred higher stresses
in the design. However, when formulating the optimization problem there were no considerations for stress. The
current research will expand on previous work to develop a novel method for implementing stress-based design
criteria in FGM structures. As material properties vary within the structure of FGMs, the yield stress will also vary
at a local level. This paper outlines a novel framework to model the variation in local yield stress of heterogeneous
structures where we interpolate between the properties of a number of base materials. Our method is employed
in the topology optimization of FGM structures subject to stress considerations. The method is verified with the
stress minimization of an L-Bracket problem which is compared to results present in the literature. We then extend
this method to the design of compliant mechanisms subject to stress constraints. We hypothesise that by specifi-
cally selecting a range of materials with a favourable relationship between Young’s modulus and yield stress we
can produce compliant mechanism designs with the same or improved performance that are less susceptible to
failure.

The subsequent sections are outlined as follows: topology optimization methods are covered in Section 2.
Stress-based formulations will be presented in Section 3, including details on sensitivity analysis. Results are
presented in Section 4 which includes a model verification by studying a stress minimization L-bracket problem,
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and studies on two design domains for compliant mechanisms subject constraints on local stresses. Two yield
stress interpolation functions are studied in each case with the two resource constraints introduced in [1]. For
comparison purposes all design problems are also solved using a homogeneous material distribution. Section 5
provides additional examples which give more insight into the methods presented.

2 Topology Optimization

The purpose of topology optimization is to distribute material within a given design domain in order to pro-
duce an optimal structure. Optimality of the structure is defined by a given objective function which is subject to
a number of constraints. The design domain, Ω is discretized into Ne elements each with a set number of design
variables xe. All design variables can be compiled into a global vector represented as xxx throughout.

2.1 SIMP formulation

In this work, design problems will be solved using (a) homogeneous, and (b) functionally graded structures.
The homogeneous method will follow a standard SIMP method where each element has one design variable
representing a relative material density such that 0≤ xe ≤ 1. An element is part of the structure for xe = 1 and void
for xe = 0. In order to achieve a clear 1-0 (solid-void) converged solution the local Young’s modulus is penalized
such that

Ee = xe
pE0 (1)

where E0 is the Young’s modulus of a solid element and p is the penalization parameter. To converge to 1-0
designs, p must be sufficiently large (p ≥ 3), however if p is too large the optimizer has a tendency to converge
to local minima [40,39]. Throughout this work, we take p = 3. In actual practice a value of xe = 0 will result in 0
stiffness and cause singularities in the FEA solution. To overcome this problem we choose a minimum value of xe
close to, but not equal to zero, such that xmin ≤ xe ≤ 1. Throughout this work xmin = 10−3.

2.2 FGM formulation

For the FGM design problems we adopt a SIMP-based method introduced previously in [1]. Here, each
element has two design variables x0,e and x1,e, which independently control the material density (solid-void) and
solid material stiffness respectively. Local Young’s modulus in FGM designs is calculated using (2).

Ee = x0,e
p(El + x1,e(Eu−El)) (2)

where El and Eu represent the lower and upper limits of the Young’s modulus. The material density, x0,e, is much
like the design variables used in the homogeneous case (1) and as such is penalized (also with p = 3) to pro-
mote a solid-void distribution. They also have the same bounds xmin ≤ x0,e ≤ 1, where xmin ensures there is some
stiffness in void regions to avoid bad conditioning of the stiffness matrix. The material stiffness variable, x1,e, is
not penalized and is bounded by 0≤ x1,e≤ 1, such that the optimizer is free to use any x1,e distribution without bias.

The most compliant material studied is lead and the stiffest is iron, whose Young’s modulus values give the
bounds El and Eu respectively. Lead and iron have yield stresses of 14 MPa and 50 MPa respectively [33]. In this
work we will study two material relationships between Young’s modulus and yield stress. Using these relation-
ships, we can approximate the local yield stress as a function of the local Young’s modulus, which is calculated
in (2). We require sensitivities of these relationships in order to solve the optimization problem and as such it is
necessary for Ee−σy relationships to be smooth, continuous and differentiable for all Ee. Hence, a least squares
method was used to interpolate between yield stress values of known materials. These relationships are shown in
Figure 1. The relationships used in this study are taken as examples to show how the proposed methods can be
applied. However, these methods can be applied to any relationship that is expressed as a continuous function.
Note also that as a SIMP-based method is used it is necessary for the relationships to extend as low as the Young’s
modulus for void regions, Emin = xmin

pEl .

Relationship A is an almost linear interpolation. Relationship B is based off a number of materials with a wide
range of properties in order to show the versatility of the method. This gives rise to two distinctively different
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Fig. 1: Relationships between yield stress and Young’s modulus for the FGM formulation.

relationships where both allow the optimizer to select material from the same range of Young’s modulus values.
The upper and lower bounds of the Young’s modulus also have the same yield stress for relationships A and
B, however the yield stress of intermediate materials is drastically different between the two. Our hypothesis
formulated in this study allows us to select material properties with a specific combination of Young’s modulus
and yield strength such that it can improve the stress distribution and performance of the structure.

2.3 Density Filtering

Filtering methods are used to achieve mesh independence, i.e. coarse and fine meshes should produce the
same solution. We adopt a method of density filtering introduced by Bruns and Tortorelli [2]. Here, we define a
filtering matrix, WWW , such that

x̃ =WWWx (3a)

x̃xx0 =WWWxxx0

x̃xx1 =WWWxxx1
(3b)

where (3a) and (3b) correspond to homogeneous and FGM cases respectively, and x̃, x̃xx0, and x̃xx1 are the filtered
design variables. The entries in WWW are calculated as

Wi j =
1

Nr

∑
k=1

wik

wi j where wi j = max[0,r−di j] (4)

such that element e j contributes to the filtered value of element ei’s design variable at a weighting inversely pro-
portional to the distance between centroids, di j, providing that the centroid of element e j is within a given filter
radius, r, whose centre is coincident to ei’s centroid. For each centroid outside of r the weighting is equal to zero.
The rows of the matrix are then normalized such that the weights for each element within r sum to 1. Note that for
the FGM formulation xxx0 and xxx1 are filtered independently and WWW is the same in each case.

2.4 Finite Element Analysis

Linear finite element analysis is the standard for solving problems with metallic materials. These materials
experience a linear elastic force-displacement relationship provided the material does not yield. This condition
can be enforced with the use of a stress constraint such that the maximum stress in the structure does not exceed
a prescribed value. The stress formulation adopted in this work is discussed in detail in the next section. Given
an external force distribution in the form a vector, f, a nodal displacement vector, u, can be determined via the
following governing equation

R = K(x)u− f = 0 (5)
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where K is the global stiffness matrix, which is a function of the design variables, x, and is a global assembly of
element stiffness matrices ke. Element stiffness matrices are calculated as follows

ke =
∫

Ωe

BT DBdΩe (6)

where B is a strain-displacement matrix containing spatial derivatives of the shape functions, N, with respect to
the deformed nodal coordinates, x, and expressed in Voigt form. The constitutive matrix assumes plane stress and
is represented by D. The expression

∫
Ωe

dΩe represents an integral over the element volume. Matrices B and D are
calculated in as

B =
∂N
∂x

(7)

D =
Ee

1−ν2

1 ν 0
ν 1 0
0 0 1

2 (1−ν)

 (8)

where Ee is the Young’s modulus of the element and ν is the Poisson’s ratio. Poisson’s ratio was taken to be 0.35
throughout. Element stresses can then be determined using the strains, εεε .

σσσ = Dεεε = DBue (9)

3 Stress Based Design

Compliant mechanisms incorporate thin compliant joints to achieve movement, however, these thin members
also create stress concentrations in the design. Stress concentrations are areas of increased stress caused by irreg-
ular geometry such as sudden changes in thickness, holes or sharp corners. For this work we will implement stress
formulations based on the von Mises yield criterion.

3.1 The von Mises Stress Formulation

The von Mises yield criterion is an empirical method of determining whether a material will yield when subjected
to complex loading. Von Mises proposed the method in 1913 [8] and in 1931 Taylor and Quinney [9] found that the
method is a more accurate predictor for yielding in metals than any previous suggested methods, such as Tresca’s
maximum yield stress criterion [10]. The von Mises stress criterion states that a material will yield if the von Mises
stress attains the material’s yield stress. The von Mises stress for plane stress conditions is defined as

σV M =
√

σxx2−σxxσyy +σyy2 +3σxy2 (10)

where σxx, σyy, σxy are calculated as the entries in (9). The von Mises stress is calculated at the four Gauss points
of an element and averaged to obtain the average von Mises stress within the element, σ̄V M .

3.2 The Consistent Stress Formulation

The von Mises stress criterion states that a material will yield if the von Mises stress attains the yield stress. Hence,
to avoid yielding we must ensure the von Mises stress for each element in the design domain is less than the local
yield stress.

σ̄V M ≤ σy (11a)

σ̄V M ≤ σy,Ee (11b)

where (11a) represents the homogeneous case with a constant yield stress, σy, and (11b) represents the FGM case
where σy,Ee is the local yield stress evaluated at the Young’s modulus, Ee, as defined in Figure 1. In this way we
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account for the fact that the different base materials have different yield limits.

Constraint relaxation techniques are employed to circumvent the singularity problem associated with stress
constraints. This problem has been studied extensively for truss structures [41, 42, 43, 44] but has equal importance
for the continuum case [4, 5, 29]. The problem arises if the design space contains a degenerate region within
which the global optimum is located. By relaxing the stress constraint we generate a smooth, continuous design
space. This is similar to the approach adopted in the SIMP-method to create a smooth design space by allowing
intermediate element densities in place of a discrete 1-0 distribution. Stresses are relaxed as follows

σ̄ = xe
η σ̄V M

σy
(12a)

σ̄ = x0,e
η σ̄V M

σy,Ee

(12b)

where σ̄ ≤ 1 to satisfy the von Mises yield criterion. In using this formulation, stresses are relaxed in the element
by multiplying by the material density raised to the exponential η , which is chosen to be 0.5. By relaxing the von
Mises stress in this manner, high stresses in void regions do not lead to high values of σ̄ .

The function in (12) is calculated for each element in the design mesh. However, we are only interested in the
element where stress is highest and to enforce (12) as a constraint on each element will be computationally ex-
pensive. Hence we use an aggregation technique based on the p-norm function to find the element with maximum
stress which gives the final expression for homogeneous (13a) and FGM (13b) designs as

σmax = max(σ̄)'
[ Ne

∑
e=1

(
xe

η σ̄V M

σy

)ζ] 1
ζ

(13a)

σmax = max(σ̄)'
[ Ne

∑
e=1

(
x0,e

η σ̄V M

σy,Ee

)ζ] 1
ζ

. (13b)

In this work, we formulate stress-based design in two ways – to minimize the maximum stress, and to impose
stress constraints such that σmax does not exceed the yield stress. For minimizing the stress the objective function
is to minimize the function given in (13). When a stress constraint is applied, one wants to ensure the maximum
von Mises stress in the solid region is less than σy and hence the constraint is defined as

σmax−1≤ 0. (14)

In (13), ζ is a constant used to evaluate the p-norm. As ζ → ∞, σmax tends to the maximum relaxed stress
ratio and the function remains unsmoothed. In contrast, when ζ → 1 the function is over-smoothed and σmax gives
a poor approximate of the maximum stress ratio. Hence, a good choice of ζ is necessary to create an adequate
balance between the two extremes. For our analysis, we use a continuation method on ζ which is initially equal
to 1 and increased over the first 10 iterations to a value of 10. Continuation on ζ is commonly adopted for stress
constraints in topology optimization [7, 28] as it prevents early convergence at a local minima. A final value of
10 was chosen because it had proved to create viable results which is in agreement with similar works [6, 36]. A
discussion on the choice ζ and its effect on results is included in section 5.1.

For design problems which require stress constraints we introduce regional stress measures. Stress constraints
cannot be imposed on each element individually as the number of constraints will become very large, creating a
large computational requirement. This issue is solved by imposing a global stress measure using a p-norm function
(13). This method reduces computational expenses but provides poor local control over the stress distribution. As
a compromise one may subdivide the design domain into m regions and impose a stress constraint on each region.
There are multiple examples of regional stress measures in the literature [6, 30, 45] showing that regional stress
measures can be used to improve local stress control with a low number of constraints.
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We adopt a method of defining m regions from previous studies by Le et al. [6]. Here, the regions are defined
based on the element’s stress ratio (13) during the current iteration, i, by first sorting element indices in descending
order of their corresponding value of σ̄ .

{e1,e2, ...,eNe : σ̄
i
e1
≥ σ̄

i
e2
≥ ...≥ σ̄

i
eNe
} (15)

Regions are then defined as follows

Ωk = {ek,em+k,e2m+k, ...} , k = 1,2, ...,m. (16)

In this manner, elements in a single region need not be connected to one another, and the elements that are
contained within a region, k, are subject to change on each iteration. It is worth noting that as the proposed method
can allow evolving of the regions the function may become non-differentiable. This would be most likely to
occur in early stages of optimization as when the design converges the regions remain predominately unchanged.
However, we experienced no adverse effects in using this method.

3.3 Sensitivity Analysis

Sensitivity analysis is conducted to determine how each design variable should change between iterations in
order to move towards an optimal design. We require sensitivities of the objective function and all the constraint
functions. In these design problems there are many more design variables than constraint functions. This makes
the adjoint method ideal for calculating the sensitivities. Taking F to represent our objective/constraint function,
we can express F in Lagrangian form as follows

Π = F +λλλ
TR = F +

[
λλλ f

T
λλλ p

T
][R f

Rp

]
(17)

where λλλ is a Lagrangen multiplier, whose values must be determined. However, note that for any λλλ , Π = F as
we know the residual, R, is equal to 0 (refer to (5)). This equation can also be represented in terms of free and
prescribed degrees of freedom (DOF) denoted by the subscripts f and p respectively. We require the sensitivities
of the function with respect to each design variable, which is represented in vector form as the derivative of Π

with respect to x. Using the chain rule and simplifying we obtain the expression

dΠ

dx
=

∂F

∂x
+

∂F

∂u f

du f

dx

+λλλ f
T
[

∂R f

∂x
+

∂R f

∂u f

du f

dx

]
+λλλ p

T
[

∂Rp

∂x
+

∂Rp

∂u f

du f

dx
+

dfp

dx

]
.

(18)

Together, u f and fp are the solutions to the finite element analysis. Note the difference between ∂

∂x and d
dx

operators, which represent explicit and implicit derivatives respectively. Explicit derivatives capture only direct
dependence of the function, whereas the implicit derivatives also capture indirect dependence due to the solution
of the equilibrium equation (5). We seek a λλλ that causes all implicit terms to vanish.

This paper will detail the derivation of sensitivities for the stress function, derivations of sensitivities for other
objective functions used can be found in previous work [1]. Here, our function is (13) where F = σmax. The
explicit derivative of σmax is calculated in (19) while the Lagrangian multipliers are calculated in (20), utilizing
the derivative of the stress function with respect to the displacement of free DOFs expressed in (21). Note that in
(19) and (21) the suffixes a and b represent homogeneous and FGM cases respectively, and σy,Ee is the yield stress
for an element evaluated using its local Young’s modulus, Ee.

∂σmax

∂x
=

(
xη σ̄V M

σy

)ζ( Ne

∑
e=1

(
xe

η σ̄V M

σy

)ζ

) 1
ζ
−1

.

(
η

x
+

1
σ̄V M

∂ σ̄V M

∂x

) (19a)
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∂σmax

∂x
=

(
x0

η σ̄V M

σy,Ee

)ζ( Ne

∑
e=1

(
x0,e

η σ̄V M

σy,Ee

)ζ

) 1
ζ
−1

.

(
η

x0
+

1
σ̄V M

∂ σ̄V M

∂Ee

∂Ee

∂x0
− 1

σy,Ee

∂σy,Ee

∂Ee

∂Ee

∂x0

)
for x ∈ x0

=

(
x0

η σ̄V M

σy,Ee

)ζ( Ne

∑
e=1

(
x0,e

η σ̄V M

σy,Ee

)ζ

) 1
ζ
−1

.

(
1

σ̄V M

∂ σ̄V M

∂Ee

∂Ee

∂x1
− 1

σy,Ee

∂σy,Ee

∂Ee

∂Ee

∂x1

)
for x ∈ x1

(19b)

λλλ p
T = 0

λλλ f
T =−∂σmax

∂u f

[
∂R f

∂u f

]−1

=−∂σmax

∂u f
K−1

f f

(20)

∂σmax

∂u f
=

1
σyζ

( Ne

∑
e=1

(
xe

η σ̄V M

σy

)ζ

) 1
ζ
−1

.

( Ne

∑
e=1

xe
ζ η

σ̄
ζ−1
V M

∂ σ̄V M

∂u f

) (21a)

∂σmax

∂u f
=

1
σy,Ee

ζ

( Ne

∑
e=1

(
x0,e

η σ̄V M

σy,Ee

)ζ

) 1
ζ
−1

.

( Ne

∑
e=1

x0,e
ζ η

σ̄
ζ−1
V M

∂ σ̄V M

∂u f

) (21b)

We can now represent (18) as follows

dΠ

dx
=

∂σmax

∂x
+λλλ p

T ∂Rp

∂x
+λλλ f

T ∂R f

∂x

=⇒ dΠ

dxe
=

∂σmax

∂xe
+λλλ e

T
(

∂R
∂x

)
e

(22)

4 Results and Discussion

This section will detail three topology optimization examples – an L-bracket, a gripper, and a force inverter. All
homogeneous problems presented in this study are modelled using the highest modulus material where E0 = 200
GPa and σy = 50 MPa. Optimization problems are solved using the method of moving asymptotes (MMA) [11].
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Fig. 2: (a) L-Bracket design domain, (b) topology solution for compliance minimization problem, and (c) average
von Mises stress distribution for compliance minimization problem.

4.1 L-Bracket

The first topology optimization problem we will solve is the L-bracket. The L-bracket problem has become the
benchmark problem for stress-based topology optimization [4,5,38,31,29,6,37]. The design domain is shown in
Figure 2a. For comparison purposes we will first solve this as a compliance minimization problem – the most
common formulation in topology optimization. The compliance minimization problem is defined as:

min
x

: C(x) = uT Ku

subject to :
∫

Ω

M(x)
M0

dΩ − M̄ ≤ 0

: 0 < xmin ≤ x≤ 1

(23)

where u and K are the global displacement vector and stiffness matrix respectively;
∫

Ω
M
M0

dΩ is the resource
fraction which is constrained by the maximum value M̄. The meaning of the resource fraction will be explained
in more detail later, but for now we can treat it as a volume fraction where M is the local contribution to the total
volume of the design and M0 is the volume of the design domain.

The result of the compliance minimization problem is shown in Figure 2 with a 20 N/mm distributed load, the
resource fraction constrained at 0.3, and a filter radius of 1.5 mm. The optimized structure is pictured in Figure
2b contains a right angle at the corner of the domain which produces a stress concentration as can be seen in
the stress distribution pictured in Figure 2c. The maximum stress in this design was 100.4 MPa, roughly double
the material’s yield strength. The converged structure produced a compliance, C∗, of 11.39, this value will help
formulate the stress minimization problem.

Our stress minimization problem is defined in (24) where the suffixes (a) and (b) correspond to homogeneous
and FGM models respectively.

min
x

: σmax(x) =
[ Ne

∑
e=1

(
xe

η σ̄V M

σy

)ζ] 1
ζ

(a)

=

[ Ne

∑
e=1

(
x0,e

η σ̄V M

σy,Ee

)ζ] 1
ζ

(b)

subject to :
∫

Ω

M(x)
M0

dΩ − M̄ ≤ 0

: C−C̄ ≤ 0
: 0 < xmin ≤ x≤ 1 (a)

0 < xmin ≤ x0 ≤ 1 , 0≤ x1 ≤ 1 (b)

(24)
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Fig. 3: Homogeneous L-Bracket stress minimization results: (a) topology solution, and (b) ratio of relaxed stress
to yield stress where the maximum relaxed stress is 51.9 MPa.

For the stress minimization problem the compliance of the structure, C, is constrained by a maximum value of
C̄. As stress relaxation methods are used we must ensure there is some stiffness in the structure to prevent the opti-
mizer forcing all elements to void in an effort to reduce the stress function. We also want to ensure that the design
will perform (with respect to stiffness) to a satisfactory standard, and so the value of the maximum compliance is
constrained to 120% of converged solution to the compliance minimization problem, C∗.

The resource constraint is treated as a cost function which can be defined in two ways for the FGM designs –
a volume constraint or a Young’s modulus constraint. For the volume constraint M(x) is the local volume of the
structure which is a function of the x0 variables only, and M0 is the volume of the design domain. The assumption
with the modulus constraint is that stiffer materials come at a higher cost either due to increased mass or higher
procurement cost. Here M(x) is the local modulus which is a function of the x0 and x1 variables, and M0 is the
sum of local moduli for the entire domain if each element were to have a maximum stiffness, Eu. For continuity, it
is important to note that volume and modulus constraints are equal for homogeneous designs, thus creating a fair
basis for comparison. The volume and modulus fractions are calculated using (25) and (26) respectively. Note that
(25) and (26) assume a uniform mesh where all elements have an equal volume, as is the case in each example
presented. ∫

Ω

M(x)
M0

dΩ =
1

Ne

Ne

∑
e=1

x0,e (25)

∫
Ω

M(x)
M0

dΩ =
1

NeEu

Ne

∑
e=1

Ee(x0,e,x1,e) (26)

Stress minimization results for the homogeneous L-bracket problem are presented in Figure 3. We can see
that the right angle present in the compliance minimization problem has been avoided and instead the topology
includes a curved member which eliminates the stress concentration from the design (as seen in Figure 3b). This
finding was expected and is in keeping with those presented the literature, thus validating our model. The change
in topology of the structure reduces the maximum stress to 51.9 MPa. In order to compare stress distributions in
the homogeneous design to FGM designs we present distributions of von Mises stress and the relaxed stress ratio
with the same contour limits. Our FGM L-bracket problem was solved using a volume constraint where topologies
and stress distributions are presented in Figure 4.

FGM designs have a similar topology to the homogeneous compliance minimization problem which ensures
the compliance constraint is satisfied, however, more compliant material has been distributed throughout the struc-
ture to ensure stress constraints are satisfied. The differences in the σy−Ee relationships also affect the Young’s
modulus distribution. Relationship A (RA), has a near-linear σy−Ee interpolation which means more compliant
materials are needed to reduce to stresses (refer to Figure 4a). This is because compliant materials are generally
able to experience larger strains before reaching before yielding. RA designs have concentrated stiffer material in
the two vertical trusses extending from the fixed edge of the design domain, and has distributed lower modulus
materials in the rest of the structure. Low-range modulus materials are concentrated towards connections between
structural members. To reduce the maximum stress the optimizer has used compliant material immediately below
the design domain’s right-angle (indicated by the arrow in figure 4a). Compared to the homogeneous design, the
maximum ratio of von Mises stress to yield stress has been reduced from 1.04 to 0.86.
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(d) Vol. constrained Rel. B Topology
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(f) Vol. constrained Rel. B σ̄

Fig. 4: FGM L-Bracket results. The red arrow in (a) highlights compliant material concentrated at the corner in
order to reduce stresses.

Relationship B (RB) is tailored such that midrange modulus materials have high yield strengths and are not
susceptible to failure. This gives the optimizer a bias towards mid to high modulus materials. Compared to RA
designs, RB designs have opted for more compliant material in structural members but have less variance in
Young’s modulus throughout the structure. RB designs do not require any low-range modulus materials as stress
constraints are easily satisfied. The RB design has greatly improved how the stress is distributed throughout the
structure, eliminated stress concentrations, and produced a maximum ratio of relaxed von Mises stress to yield
stress of 1.02.

4.2 Compliant Mechanisms

Compliant mechanism designs are produced by maximizing the mechanical advantage. The two design domains
studied were: (1) a gripper, and (2) a force inverter. These design domains are shown in Figures 5a and 8a. The
optimization problem is defined in (27) where the suffixes (a) and (b) correspond to homogeneous and FGM mod-
els respectively.
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Fig. 5: (a) Gripper design domain, (b) topology solution with red arrow highlighting a 90◦ corner leading to a
stress concentration, and (c) average von Mises stress distribution without stress constraints.

min
x

: f (x) =−Fout

Fin

subject to :
∫

Ω

M(x)
M0

dΩ − M̄ ≤ 0

: C−C̄ ≤ 0

:
[

∑
e∈Ωk

(
xe

η σ̄V M

σy

)ζ] 1
ζ

≤ 1 ,

k = 1,2,3, ...,m (a)[
∑

e∈Ωk

(
x0,e

η σ̄V M

σy,Ee

)ζ] 1
ζ

≤ 1 ,

k = 1,2,3, ...,m (b)
: 0 < xmin ≤ x≤ 1 (a)

0 < xmin ≤ x0 ≤ 1 , 0≤ x1 ≤ 1 (b)

(27)

Compliant mechanism designs are solved with both volume and Young’s modulus constraints (as defined in
(25) and (26)) for comparison between the approaches. All compliant mechanisms have a maximum allowable re-
source fraction, M̄, of 0.2. The second constraint is on the compliance at the input port which ensures a continuous
path of material from input to output locations. Without this constraint, the optimizer will push densities to void in
an effort to reduce the objective function. The maximum value of compliance, C̄, is equal to the compliance of the
initial design where all element densities are equal to M̄, and x1 = 1 (for the FGM problems). The third constraint
is on the max local stresses in m regions as defined in (16), where m = 4 and m = 5 for the gripper and inverter
designs respectively. Note that different m values were used for the convenience of having the same number of
elements in each region – as the two problems had a different number of elements in their finite element mesh, we
sought values of m such that Ne is divisible by m and 4≤m≤ 8. All designs are subject to an input force of 3 N/mm.

Results for the homogeneous gripper without and with stress constraints are shown in Figures 5 and 6 respec-
tively. By comparing the gripper results with and without stress constraints we see that stress concentrations at
the back of the gripper’s jaws have been reduced, note also that this is where the maximum stress occurred in
the gripper with no stress constraint. By comparing the topologies in Figures 5b and 6a we see that the optimizer
has achieved this reduction in stress by rounding the inner corners of the jaws (as indicated by the arrows). The
thickness of the vertical member at the back of the jaws has also been increased and the design contains an ex-
tra supporting member extending from the output port. Note that high stresses are still experienced at the output
port of the stress-constrained gripper. These stresses are unavoidable for the gripper design problem and are also
present in all future results.
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Fig. 6: Homogeneous stress-constrained gripper results: (a) topology solution with red arrow highlighting the
rounded inner edge which avoids stress concentrations, (b) average von Mises stress distribution, and (c) ratio of
relaxed stress to yield stress.

FGM gripper designs are shown in Figure 7. There are distinct differences in the topology and Young’s mod-
ulus distributions between volume- and modulus-constrained designs – as expected, modulus-constrained designs
use a larger volume with a wider range of modulus values. This is in keeping with findings in previous work in [1].

The FGM volume-constrained RA gripper (Figures 7a-7c) has rounded structural members at the top and bot-
tom of the jaws which has eliminated stress concentrations from the design (indicated by the arrow in figure 7a).
This is a similar result to the homogeneous design in Figure 6a. From Figure 7c we see that this design has dis-
tributed the stresses throughout the structure. The modulus-constrained RA gripper (Figures 7d-7f) still contains
some stress concentrations but at a lower magnitude than previous designs (and far less than the yield stress).
These stress concentrations are all at the compliant joints (and the unpreventable output port) rather than the back
of the jaws which was the failure point in the unconstrained gripper design. As stress concentrations are present
this also means that stresses are not evenly distributed throughout the structure which is seen in Figure 7f.

The FGM volume-constrained RB gripper can withstand higher stresses than its RA counterpart. Similar to
the L-bracket results we see that the RA design opts for more of the stiffest material with low modulus materials
only concentrated towards the joints. The RB volume-constrained design has concentrated the stiffest material
towards the output port and used more mid-range modulus materials throughout the structure. This mechanism
employs two vertical structural members behind the jaws in an effort to reduce stress concentrations (as indicated
by the arrow in figure 7g). The presence of this additional member reduces the stresses in the primary member
including the point of maximum stress (top and bottom of primary structural member). Regions of high stress do
not necessarily correspond to high stress-ratio this is evident in comparing Figures 7h and 7i in particularly at
joints behind the gripper’s jaws.

The material distribution of modulus-constrained designs has few differences between RA and RB, however
there is more stiffer material concentrated towards the input and output ports for RB which leads to a higher me-
chanical advantage. Much of the same conclusions drawn from the RA modulus-constrained gripper can be said
for the RB gripper also: low-magnitude stress concentrations are present at compliant joints but not at the back
of the jaws; stresses are not distributed throughout the structure; magnitude of stress-ratio is reduced compared to
homogeneous design; and mechanical advantage is higher compared to volume constrained designs. A compari-
son of the mechanical advantage

(Fout
Fin

)
for all converged designs is shown in Table 1.

Table 1: Mechanical advantage of converged gripper designs.

Design Problem Mech. Advantage
Homogeneous 4.29
Stress-constrained Homog. 4.01
FGM RA Volume-constrained 3.33
FGM RA Modulus-constrained 3.53
FGM RB Volume-constrained. 4.08
FGM RB Modulus-constrained 5.66
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(f) Mod. constrained Rel. A σ̄

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Y
o
u
n
g
's

 M
o
d
u
lu

s
 (

M
P

a
)

10
5

(g) Vol. constrained Rel. B Topology

0

10

20

30

40

50

60

V
o

n
 M

is
e

s
 S

tr
e

s
s
 (

M
P

a
)

(h) Vol. constrained Rel. B σ̄V M

0

0.2

0.4

0.6

0.8

1

1.2

R
e

la
x
e

d
 S

tr
e

s
s
 R

a
ti
o

, 
/

y
,E

e
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(l) Mod. constrained Rel. B σ̄

Fig. 7: FGM gripper results. The red arrows in (a) highlight the rounded inner edge and (g) the second vertical
member which are used to reduce the stress ratio.

Comparing to the results presented in [1] we see similarities in the topology and material distribution, espe-
cially for modulus-constrained designs. However comparing the stress distributions we see that the results of the
current study are far more efficient at distributing stresses throughout the structure leading to a reduction in stress
concentrations. Thus the proposed method has been able to better distribute stresses in the structure making the
design less susceptible to failure.

The optimizers approach to distributing material is distinctly different between RA and RB designs. RA de-
signs have a more even stress distribution, whereas RB designs are able withstand higher stresses so the optimizer
is less inclined to distribute stresses throughout the structure. Although some localized stresses are present in the
designs, they have been reduced in magnitude or spread over a larger area. It should be also noted that the stress
constraint is satisfied for all designs. RB designs have achieved a higher mechanical advantage than RA designs.
This is because the Ee−σy relationship is tailored such that RB designs are less reliant on more compliant material
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Fig. 8: (a) Inverter design domain, (b) topology solution problem, and (c) average von Mises stress distribution
without stress constraints.
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Fig. 9: Homogeneous stress-constrained inverter results: (a) topology solution, (b) average von Mises stress dis-
tribution, and (c) ratio of relaxed stress to yield stress.

to reduce stresses. As stiffer material is used, the design can transmit higher loads and achieve a larger mechanical
advantage.

The second compliant mechanism problem studied is the force inverter problem shown in Figure 8a. The
problem is defined the same as the gripper mechanism in (27). All inverter mechanisms have a resource con-
straint of 0.2 and the maximum compliance, C̄, is equal to the compliance of the initial material distribution where
xe = M̄ = 0.2 for all e. The results for the homogeneous inverter problem without and with stress constraints are
shown in Figures 8 and 9 respectively. The unconstrained results show clear stress concentrations at the joints
where there is a maximum stress of 100.1 MPa. These compliant joints are very thin and only one element thick at
the point of maximum stress. The stress constrained design has much thicker joints which reduces the maximum
stress to 50.0 MPa. The stresses have been better distributed throughout the structure, however there are still stress
concentrations, albeit spanning a larger area than the unconstrained problem. It should also be noted that all de-
signs experience stress concentrations towards the output port and fixed boundaries. Like the gripper, these stress
concentrations are unpreventable and inherent to the inverter problem.

FGM force inverter results are shown in Figure 10. Unlike the gripper problem, here there are very few differ-
ences in topology and material distribution between the FGM results. This implies that there is one optimal solu-
tion to the inverter problem. The similarities in the inverter designs is also reflected in the value of the objective
function where each design produces a similar mechanical advantage as shown in Table 2. Modulus-constrained
designs have been able to opt for slightly thicker members which gives a small increase in mechanical advantage.
Both volume- and modulus-constrained designs predominately contain the stiffest material, however the presence
of more compliant material, particularly close to the joints, has helped to improve stress distributions compared to
the homogeneous design.
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Table 2: Mechanical advantage of converged inverter designs.

Design Problem Mech. Advantage
Homogeneous 4.49
Stress-constrained Homog. 4.28
FGM RA Volume-constrained 4.05
FGM RA Modulus-constrained 4.32
FGM RB Volume-constrained. 4.63
FGM RB Modulus-constrained 4.80

RA designs (Figures 10a-10 f ) incorporate fewer thin joints compared to RB designs (Figures 10g-10l). This
allows stress to be more efficiently distributed leading to fewer stress concentrations. However, all designs have
satisfied the stress constraint.

We experienced convergence issues when the inverter problem was solved with higher loads because the stress
constraint could not be satisfied. This implies that the joints are crucial to the function of the force inverter.

5 Additional examples

5.1 Choice of p-norm parameter

It is important to understand how the choice of the p-norm parameter, ζ , can affect the converged designs. Up to
now, all the results presented used ζ = 10 (with continuation). Figure 11 shows results for the gripper problem
(defined in (27) and figure 5a) for homogeneous stress-constrained designs with ζ = 5 and ζ = 15. We see that
with a low value of ζ the optimizer has not been able to been able to round the inner edges of the grippers jaws
and stress concentrations are still present. On the other hand, ζ = 15 produces a similar design to when ζ = 10.
Here the inner jaws are rounded and stress concentrations are removed. It is also worth noting that higher values
of ζ are thought to be more susceptible to local minima. Figure 12 shows the FGM RA gripper designs with ζ = 5
and ζ = 15. Comparing to the ζ = 10 designs in figure 7 one can make the same observations as the homogeneous
grippers.

5.2 Impact of resource constraint

The resource constraint acts as a constraint on cost. Two resource constraints are presented in this work –cost
proportional to volume, and cost proportional to the Young’s modulus. As a third option we modify the resource
constraint in (27) such that more compliant materials associated with low values of x1 come at a greater cost. This
is done by adding a third term to the constraint which creates a bias towards high values of x1.∫

Ω

M(x)
M0

dΩ − M̄+α

Ne

∑
i=1

1− x1

Ne
≤ 0 (28)

where α is a weighting-parameter for controlling the weight of the bias towards higher modulus materials. Figure
13 shows results for the gripper problem for a bias modulus constraint with α = 0.02, M̄ = 0.2, and using relation-
ship A. Comparing to results in 7d we see the large regions of compliant material that is present in the unbiased
design have been replaced with a stiffer truss-like structures. Stress concentrations are also eliminated from the
design and the mechanism produced a mechanical advantage of 3.34, which is slightly less than the 3.53 achieved
with the original cost constraint. This is expected as there is now more restriction on the design space.

6 Conclusion

In this work we have introduced a novel method for topology optimization of functionally graded structures with
stress considerations. Adjoint sensitivities are derived in detail for both homogeneous and FGM p-norm stress
functions. Three design problems are studied, the first being the L-bracket problem which is a benchmark problem
for stress-based design. Homogeneous results for the L-bracket match the results present in the literature which
helps to validate our model. Expanding to FGM designs, the results have shown us that this method behaves
as expected with the maximum relaxed stress-ratio in the structure being reduced. Despite this, some areas of
high local stress are still present in converged designs. This is especially prominent in the inverter problems,
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Fig. 10: FGM inverter results.
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Fig. 11: Homogeneous stress-constrained gripper results with ζ = 5 and ζ = 15.
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(c) Topology when ζ = 15
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Fig. 12: FGM RA stress and volume-constrained gripper results with ζ = 5 and ζ = 15.
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Fig. 13: Results for a modified cost constraint where

and for higher loads, the inverter problems experienced convergence issues as the designs were unable to satisfy
the stress constraint. Comparing volume- and modulus-constrained problems we have observed that stresses are
generally lower in modulus-constrained designs but stresses are more evenly distributed in volume-constrained
designs. Modulus-constrained compliant mechanism designs achieve the highest mechanical advantage which is
in keeping with previous results. RB designs outperform RA designs in each case which shows that for equal
resources the design engineer can select a range of materials with favourable material properties to achieve more
efficient designs which are not susceptible to failure.
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59:754
11. Svanberg K (1987) The method of moving asymptotes — a new method for structural optimization. Int J Numer Meth Eng 24(2):359-373
12. Alonso C, Querin OM, Ansola R (2013) A Sequential Element Rejection and Admission (SERA) method for compliant mechanisms

design. Struct Multidiscip Optim 47(6):795-807
13. Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comp Phys 194(1):363-

393
14. Luo Z, Tong L, Wang MY, Shengin W (2007) Shape and topology optimization of compliant mechanisms using a parameterization level

set method. J Comp Phys 227(1):680-705
15. Luo Z, Tong L (2008) A level set method for shape and topology optimization of large-displacement compliant mechanisms. Int J Numer

Meth Eng 76(6):862-892
16. Alonso C, Ansola R, Querin OM (2014) Topology synthesis of multi-material compliant mechanisms with Sequential Element Rejection

and Admission. Finite Elem Anal Des 85:11-19



A stress-based topology optimization method for heterogeneous structures 19

17. Sigmund O (2001) Design of multiphysics actuators using topology optimization –Part II: Two-material structures. Comput Meth Appl
Mech 190(49-50):6605–6627

18. Yin L, Ananthasuresh GK (2003) Topology optimization of compliant mechanisms with multiple materials using a peak function material
interpolation scheme. Struct Multidiscip Optim 23(1):49–62

19. Wang MY, hen S, Wang X, Mei Y (2005) Design of Multimaterial Compliant Mechanisms Using Level-Set Methods. J Mech Des
127(5):941-956

20. Gaynor A, Meisel NA, Williams CB, Guest JK (2014) Multiple material topology optimization of compliant mechanisms created via
polyjet three-dimensional printing. J Manuf Sci Eng 136(6)

21. Wolf D, Yip S (1993) Material interfaces: atomic-level structure and properties, Springer, Netherlands
22. Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J

Mech Phys Solids 45(6):1037–1067
23. Stegmann J, Lund E (2005) Discrete material optimization of general shell structures. Int J Numer Methods Eng 62(14):2009–2027
24. Miyamoto Y, Kaysser WA, Rabin BH, Kawasaki A, Ford RG (1999) Functionally graded materials: design processing and applications,

Springer
25. Carbonari RC, Silva ECN, Paulino GH (2009) Multi-actuated functionally graded piezoelectric micro-tools design: A multiphysics topol-

ogy optimization approach. Int J Numer Meth Eng, 77(3):301–336
26. Carbonari RC, Paulino GH, Silva ECN (2010) Integral Piezoactuator with Optimum Placement of Functionally Graded Material - A

Topology Optimization Paradigm. J Intel. Material Syst Struct 21(16):1653–1668
27. Matsui K, Terada K (2004) Continuous approximation of material distribution for topology optimization. Int J Numer Meth Eng

59(14):1925–1944
28. Stump FV, Silva ECN, Paulino GH (2007) Optimization of material distribution in functionally graded structures with stress constraints.

Commun Numer Methods Eng 23(6):535551
29. Bruggi M, Venini P (2008) A mixed FEM approach to stress constrained topology optimization. Int J Numer Methods Eng

73(11):1693–1714
30. Parı̀s J, Navarrina F, Colominas I, Casteleiro M (2007) Block aggregation of stress constraints in topology optimization of structures. In:

Hernndez S, Brebbia CA (eds) Computer aided optimum design of structures X. Myrtle Beach (SC), USA
31. Parı̀s J, Navarrina F, Colominas I, Casteleiro M (2009) Topology optimization of continuum structures with local and global stress

constraints. Struct Multidisc Optim 39(4):419–437
32. Howell LL (2001) Compliant mechanisms. Wiley.
33. MatWeb Material Property Data, [Online]. Available: https://www.matweb.com/index.aspx.
34. Miyamoto Y, Kaysser WA, Rabin BH, Kawasaki A, Ford RG, Functionally Graded Materials: Design, Processing and Applications,

Springer, 1999.
35. Chu S, Gao L, Xiao M, Luo Z, Li H (2017) Stressbased multimaterial topology optimization of compliant mechanisms. Int J Numer Meth

Eng 113(7):1021–1044
36. de Leon DM, Alexandersen J, Jun JS, Sigmund O (2015) Stress-constrained topology optimization for compliant mechanism design.

Struct Multidisc Optim 52(5):929–943
37. Svanberg K, Werme M (2007) Sequential integer programming methods for stress constrained topology optimization. Struct Multidisc

Optim 34(4):277–299
38. Pereira JT, Fancello EA, Barcellos CS (2004) Topology optimization of continuum structures with material failure constraints. Struct

Multidisc Optim 26(1–2):50–66
39. Bendsøe MP, Sigmund O (2004) Topology optimization: theory, methods, and applications, Springer
40. Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Math 69:635–654
41. Kirsch U (1990) On singular topologies in optimum structural design. Struct Multidisc Optim 2(3):133–142
42. Rozvany GIN, Sobieszczanski-Sobieski J (1992) New optimality criteria methods: forcing uniqueness of the adjoint strains by corner-

rounding at constraint intersections. Struct Multidisc Optim 4(3–4):244–246
43. Rozvany GIN (2001) On design-dependent constraints and singular topologies. Struct Multidisc Optim 21(2):164–172
44. Cheng GD, Guo X (1997) Epsilon-relaxed approach in structural topology optimization. Struct Multidisc Optim 13(4):258–266
45. Jeong SH, Park SH, Choi DH, Yoon GH (2012) Topology optimization considering static failure theories for ductile and brittle materials.

Comput Struct 111:116–132
46. Lipton R (2002) Design of functionally graded structures in the presence of stress constraints. Int J Solids Struct 39(9):2575–2586
47. Lipton R, Michael Stuebner (2006) Optimization of composite structures subject to local stress constraints. Comput Methods Appl Mech

Eng 196(1-3):66–75


	Introduction
	Topology Optimization
	Stress Based Design
	Results and Discussion
	Additional examples
	Conclusion

