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Abstract

We present an original method for multimaterial topology optimization with elastic and thermal re-
sponse considerations. The material distribution is represented parametrically using a formulation
in which finite element-style shape functions are used to determine the local material properties
within each finite element. We optimize a multi-functional structure which is designed for a combi-
nation of structural stiffness and thermal insulation. We conduct parallel uncoupled finite element
analyses to simulate the elastic and thermal response of the structure by solving the two-dimensional
Poisson problem. We explore multiple optimization problem formulations, including structural de-
sign for minimum compliance subject to local temperature constraints so that the optimized design
serves as both a support structure and a thermal insulator. We also derive and implement an orig-
inal multimaterial aggregation function that allows the designer to simultaneously enforce separate
maximum temperature thresholds based upon the melting point of the various design materials.
The nonlinear programming problem is solved using gradient-based optimization with adjoint sen-
sitivity analysis. We present results for a series of two-dimensional example problems. The results
demonstrate that the proposed algorithm consistently converges to feasible multimaterial designs
with the desired elastic and thermal performance.

Keywords: Elasticity, Finite element methods, Structures, Thermal effects, Topology design

1. Introduction

Topology optimization was first introduced by Bendsøe and Kikuchi in 1988 [1], as a homogenization-
based method for obtaining optimal material layouts. Unlike size and shape optimization, topology
optimization modifies the full material layout and topology throughout the design domain. There-
fore, it is able to generate drastic changes in the mechanical performance and functionality of
the structure. With the development of additive manufacturing, structures designed by topology
optimization are easier to fabricate than ever before [2], which has inspired a renewed focus on
topology optimization for designing multi-functional and multimaterial structures. Despite the rel-
ative maturity of the field, few authors have explored the design of multimaterial, multi-functional
structures that combine optimal elastic and thermal performance. Previous studies have individu-
ally addressed the topics of elastic response, thermal response and multimaterial design, and have
successfully solved various benchmark problems [3, 4, 5].

Topology optimization of elastic problems remains a widely studied research area that includes
studies on stress constraints [6, 7, 8], extreme thermal expansion [9, 10, 11], and elastoplastic
structures [12, 13, 14]. In terms of topology optimization for the steady-state heat conduction
problem, Bendsøe and Sigmund first proposed that such structures should be branch-like and have
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venation for an efficient transmission of heat energy [5]. Other researches in this area focused
on efficiently obtaining results for the thermal conductivity problem. Li et al. implemented an
evolutionary method in 2004 [15], and Zhuang et al. used a level-set method in 2007 [16]. More
recently, Lohan et al. compared results generated by the SIMP method with results from a space
colonization algorithm [17] to study 2D topology optimization involving heat conduction. While
most authors have relied on finite element analysis to simulate the thermal response, Gersborg-
Hansen et al. used the finite volume method to solve the 2D topology optimization problem and
also obtained a tree-like result [18]. Efforts in the area have also been directed to extending the
problem to a three-dimensional domain. Dede [19], Chen et al. [20] and Burger [21] successfully
confirmed that the optimized structure for heat conduction should remain branch-like in the 3D
problem. Researchers have also considered heat convection problems together with the topology
optimization problem of heat conduction for various special cases [22, 23, 24]. One study from de
Kruijf et al. in 2007 combines thermal conductivity and elasticity, by setting multiple objectives
for a single-material optimization problem [25]. Their results show that such problems will result
in a structure with the combined features of trusses and venation. However, multimaterial cases
and more practical applications still remain unexplored.

It is our hypothesis that allowing for multiple materials provides the optimizer with greater
freedom to pursue multiple competing objectives as compared with single-material optimization.
Bendsøe and Simgund first proposed a SIMP material interpolation formulation for two materi-
als plus void elements in 1988 [26], which remains a popular method for multimaterial topology
optimization [27, 28, 29]. Later, Gao et al. proposed a modified formulation for three materials
plus void elements [30]. Another widely adopted method for multimaterial representation is the
multi-material level set method in which a unique level-set function is optimized for each material
phase [31, 32, 33].

Similar versions of the multiphase design problem have arisen in other application domains,
such as the design of composite layups, where the ply angles of the composite layers must conform
to a discrete set of admissible angles due to manufacturing considerations. In this context, the
play angles are analogous to the material phases found in the multimaterial topology optimization
problem. For the composite layup design task, Bruyneel et al. [36] introduced a parameterization
scheme in which the local ply angle was represented by a set of shape functions similar to those found
in the isoparametric finite element formulation. The shape functions were penalized in order to
encourage convergence to discrete values, and eliminate intermediate ply angles from the optimized
design. Consequently, they coined the method, shape functions with penalization (SFP). In 2017,
James applied the SFP method to the multimaterial topology optimization problem, and introduced
a novel modification to enable simultaneous topology design with optimal material selection [34].

This study endeavors to extend that framework by applying it to multimaterial topology op-
timization problems containing both elastic and thermal considerations. In this paper, we choose
the general case of a 2D structure with linear elastic properties and steady-state temperature dis-
tribution. Since both the elastic response and the thermal response of the domain are linear and
uncoupled, we separately implement two finite element analyses to model both responses, and use
a SFP formulation to allow for three design materials plus void. In this paper, several key contribu-
tions are made, beginning with the extension of the SFP formulation to the multiphysics problem
containing elastic and thermal response. Additionally, we introduce novel constraint formulations
for enforcing regional maximum temperature constraints and material-specific local temperature
constraints within the multimaterial structure.
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2. Methodology

Using a multimaterial framework, the design task is treated as a material distribution problem
in accordance with the topology optimization method. We use uncoupled linear finite element
analyses to model the linear elastic response and steady-state temperature distribution in the
structural domain. To quantify the impact of expanding the design space to include multiple
materials, we solve both the single-material problem and multimaterial problem, and compare the
performance of the optimized designs obtained by each approach. In addition, we also study the
results produced by different combinations of objective and constraint functions.

2.1. The Combined Thermoelastic Design Problem

For the initial benchmark problem, the design domain is selected to be a 12m×2m MBB beam
domain with load p = 100kN at the top center and fixed temperature T = 100◦C at the bottom
center. The depth of the beam (in the z-direction) is 1m. A fixed heat flux q = 50w/m2 is applied
to the outer surface of the beam. There is no distributed heat source within the volume of the
structure.

(a) The elasticity problem (b) The thermal conductivity problem

Figure 1: Geometry and boundary conditions for the combined thermoelastic design problem

We set the multimaterial beam to be composed of three materials plus void elements. The
three materials are distinctly different in their properties, in order to allow the user to exploit
these differences to pursue the various design objectives and constraints. The three materials are
Sn96.5/Ag3.0/Cu0.5 (SAC305), Beryllium Copper (BC) and Aluminum-Silicon-Carbide Composite
(Al-SiC). Their mechanical and thermal properties [35] are shown below in Table 1.

Material Void SAC305 BC Al-SiC

E(GPa) 10−9 51 131 188

κ(W/(m·◦C)) 0.5 59 105 200

Melting Point(◦C) - 217-218 865 - 955 557 - 613

Table 1: Material properties

2.2. Finite Element Analysis

We use square finite elements to analyze the elastic and thermal responses of the design domain.
The elastic and thermal governing equations for the design domain are shown in equation 1 and
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equation 5. For the elastic problem, we apply the plane stress formula. Its governing differential
equation is given by

Elastic GDE :

[
∂
∂x 0 ∂

∂y

0 ∂
∂y

∂
∂x

] σxx
σyy
σxy

+

[
bx
by

]
= DTσv + b =

[
0
0

]
Boundary Equation : σn+ f = 0

(1)

where b is the body force vector which equals 0 for this problem, σv is the two-dimensional Cauchy
stress tensor expressed in Voigt notation, f is the traction force vector and n is the unit normal on
the surface to which the traction is applied. The relationship between strain, ε, and displacement,
u, is defined by the matrix D

εv = Du

D =

 ∂
∂x 0

0 ∂
∂y

∂
∂y

∂
∂x

 (2)

Finally, the relationship between stress σ and strain ε is defined by the constitutive matrix E for
the two-dimensional plain stress problem, as shown below.

σv = Eεv

E =
E

1− ν2

 1− ν ν 0
ν 1− ν 0
0 0 1

2(1− 2ν)

 (3)

where E is Young’s modulus and ν is the Poisson’s ratio which we have set to be 0.3 in the
examples that follow. The applied force in the elasticity problem has a magnitude of p = 100kN. The
boundary value problem described above is discretized using a uniform grid of square isoparametric
finite elements so that the resulting equilibrium equation can be written as follows.[

Ke
ff Ke

fc

Ke
cf Ke

cc

] [
uf
uc

]
−
[
F f

F c

]
= 0 (4)

whereKe is the stiffness matrix of the elastic problem, u is the global vector of nodal displacements,
and F is the global consistent force vector. Here we have partitioned the linear system into blocks
corresponding to the free (f) and constrained (c) degrees of freedom, which we will later use when
deriving the adjoint sensitivity analysis formulas.

The thermal response of the structure is governed by the boundary value problem given in Eqn.
5. Here, κ is the thermal conductivity of the design material, Q is the internal heating source which
equals 0 in the example presented, T is the temperature field, and q heat flux at the surface. Note
that nx and ny are x and y components of the unit outward normal vector.

Thermal GDE : κx
∂2T

∂x2
+ κy

∂2T

∂y2
+Q = 0

Boundary Condition : T = 100◦C along ∂ΩT ;

κx
∂T

∂x
nx + κy

∂T

∂y
ny + q = 0, q = 50w/m2 along ∂Ωq = ∂Ω/∂ΩT .

(5)
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Similar to the elasticity problem, the finite element discretization of the thermal problem leads
to a linear algebraic system as shown in equation 6[

Kt
ff Kt

fc

Kt
cf Kt

cc

] [
T f
T c

]
−
[
qf
qc

]
= 0 (6)

Hese Kt is the thermal stiffness matrix, T is vector of nodal temperatures, and q is the heat flux
vector, all of which have been partitioned into blocks corresponding to the free and constrained
degrees of freedom.

2.3. Design Parameterization

We treat the design task as a material distribution problem in which we optimally distributed
multiple design materials throughout the working domain the pursue a given objective. In the
current study, the design materials are characterized by their Young’s modulus (i.e. elastic stiffness),
and their thermal conductivity. The material distribution is represented parametrically using the
Shape Functions with Penalization (SFP) method. This approach was first used in composite
design by Bruyneel et al. [36] and Gao et al.[37] and then was adapted to the topology optimization
problem by James [34]. Under this formulation, the Young’s modulus, Ei, and thermal conductivity,
κi, of each element, i, is evaluated as a weighted sum of the the respective properties of all available
material phases, and can be expressed as

Ei =
m∑
j=1

µ
(j)
i E(j)

κi =

m∑
j=1

µ
(j)
i κ(j)

(7)

where the weights, µ(j), are a set of activation functions and have the form shown in equation 8

µ(1) = rP1 r
P
2

µ(2) = rP1 (1− r2)P

µ(3) = (1− r1)P rP2

µ(4) = (1− r2)P (1− r1)P

(8)

In equation 8, r1, r2 ∈ [0, 1] are independent variables, directly selected by the optimizer, and
P is a penalization factor. Both the Young’s modulus and thermal conductivity are penalized to
guarantee that there is only one material in each element, and that the volume ratio of each element
is the same for both design parameters [25]. Once the local effective Young’s modulus and thermal
conductivity of each element are computed, this information is assembled to construct the global
elastic and thermal stiffness matrices used in the finite element analysis equations (equations 4 and
6 respectively), to solve the global displacement and temperature distributions.

2.4. Functions of Interest

2.4.1. The Combined Elastic and Thermal Objective Function

In the first set of example problems, the objective function is a summation of the normalized
elastic compliance (i.e. strain energy) and the normalized average temperature of the design domain
excluding void area. The resulting function has the following form,

fobj =
F Tu

F Tu0

+

(∑n
i=1(1− µ(1)

i )Ti∑n
i=1(1− µ(1)

i )

)
/

(∑n
i=1(1− µ(1)

0i
)T0i∑n

i=1(1− µ(1)
0i

)

)
(9)
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where F global vector of nodal forces used in the finite element analysis, and Ti is the approximate
average temperature in element i, based on a one-point Gauss quadrature integration, as defined in

equation 10, where T
(ei)
i is the temperature value at node ei within element i. Note also that µ(1)

is the activation function of the void phase, therefore by pre-multiplying each element’s average

temperature by (1− µ(1)
i ), we effectively filter out all void elements from the summation.

Ti =
4∑

ei=1

1

4
T

(ei)
i (10)

For both the elastic and thermal terms, the compliance and average temperature are normalized
with respect to their initial values corresponding to the baseline structure, which serves as the
starting point for the optimization search. In equation 9, the subscript, 0, indicates the baseline
value for a given parameter.

2.4.2. Temperature-Based Constraints

In the case of a thermal insulator, we may wish to limit the maximum temperature on an
exposed surface. For the design domain shown in Figure 1 we directly enforce a constraint on the
temperature along the top surface of the structure, where elements on the top surface are numbered
from n to m. We sum over each element within this range, and take the p-norm aggregate of the

normalized average temperature of within each element (Ti). Again, we use the coefficient (1−µ(1)
i )

so that any void elements within the prescribed range are omitted from the summation. The p-
norm function allows us to obtain a smooth approximation of the maximum local temperature.
The resulting formulation of the constraint function is given by

g =

[
m∑
i=n

(
(1− µ(1)

i )η
Ti
T ∗

)p]1/p

≤ 1 (11)

where T ∗ is the maximum allowable temperature. For large values of the aggregation parameter
p, the function approaches the maximum normalized temperature along the chosen surface. The
parameter η is an additional constant used to promote stable convergence of the optimization
search. In the examples presented, we select p and η to have values of 10 and 0.8 respectively.

In other design problems, we wish to set a unique temperature constraint for each material
used in the design. This type of constraint may be useful if the primary concern is preventing
melting or viscoelastic creep within the material. In this case, the maximum allowable temperature
is specific to the material, therefore we must set separate temperature limits T ∗(j) for each design
material. The SFP formulation used in this study provides an effective and numerically efficient
means of enforcing a single global temperature constraint that is specific to each material within
the structure. This constraint function is shown in equation 12.

g =

 N∑
i=1

 4∑
j=2

(µ
(j)
i )η

Ti

T ∗(j)

p1/p

≤ 1 (12)

Note that we sum over all elements in the domain, and for each element we take a weighted

sum of the quantity given by (µ
(j)
i )η Ti

T ∗(j) . If element i contains the non-void material phase j,

then the sum
∑4

j=2(µ
(j)
i )η Ti

T ∗(j) will contain only one non-zero term, which reduces to Ti
T ∗(j) , such

that the average temperature of element i is normalized with respect to the maximum temperature
threshold corresponding to the specific material contained within that element. For any converged
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design in which all elements contain only one material, this constraint will be satisfied only if, for
any element i containing material j, the average temperature within that element Ti, is equal to or
less than the maximum allowable temperature, T ∗(j), for material j.

2.5. Sensitivity Analysis

Due to the high dimensionality of the design space associated with the multimaterial topology
optimization problem, we use gradient-based methods to solve the numerical optimization prob-
lem. In this paper, we choose Method of Moving Asymptotes (MMA) [41] to solve the nonlinear
programming problem. To compute the design sensitivities, we use the adjoint method, which
begins by rewriting the finite element equilibrium equation (4) in residual form Re = 0, as shown
in equation 13. The thermal problem (equation 6) also has an analogous residual form Rt = 0.[

Re
f

Re
c

]
=

[
Ke

ff Ke
fc

Ke
cf Ke

cc

] [
uf
uc

]
−
[
F f

F c

]
= 0 (13)

The sensitivity analysis of the elastic problem is well-known and can be found in reference [5].
Hence we devote this section to discussing the sensitivity analysis of the thermal problem.

2.5.1. Differentiating the Average Temperature Function

For the objective combining both elastic compliance and the average temperature, as shown in
equation 9, we can separately discuss the sensitivities of the elastic term and the thermal term since
they are uncoupled from each other. Hence, here we extract the thermal portion of the function
(equation 9) and discuss its sensitivity. We define the new objective as

fobj =

∑n
i=1(1− µ(1)

i )Ti∑n
i=1(1− µ(1)

i )
. (14)

Then we form the augmented Lagrangian function by adding the residual term Rt.

Π(T f , r) = f(T f , r) + λTfR
t
f (T f , r) + λTc R

t
c(T f , r) (15)

Note that the vector λT = [λTf , λ
T
c ] is a free parameter, whose value we will subsequently select to

minimize computational effort. Differentiating the augmented expression 15 with respect to r, we
have

dΠ

dr
=
∂f

∂r
+ λTf

∂Rt
f

∂r
+ λTc

∂Rt
c

∂r
+

[
∂f

∂T f
+ λTf

∂Rt
f

∂T f
+ λTc

∂Rt
c

∂T f

]
dT f
dr

, (16)

where the operator ∂/∂r denotes explicit derivatives, which capture only direct dependence. By
contrast, implicit derivatives, denoted d/dr, capture any indirect dependence the function may have
with respect to r, due to the solution of the residual equation. Consequently, implicit derivatives
are much more costly to evaluate, and this operation should be avoided if possible.

To eliminate the implicit terms in equation 16, we select the adjoint solution for the parameters
λf and λc, which yields {

λc = 0

λf = −Kt
ff
−1 ∂fobj

∂T f

(17)

Then the differentiation of the augmented Lagrangian expression (equation 15) becomes

dfobj
dr

=
∂fobj
∂r
−

[
Kt

ff
−1 ∂fobj

∂T f

0

]T
∂Kt

∂r
T (18)
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Substituting equation 7 into the equation above, we can ultimately get the following derivative
formula with respect to the local design parameter vector ri = [ri1, ri2]T

dfobj
dri

=
∂fobj
∂ri

−
∂µ

(j)
i

∂ri
κ(j)

[
t̃
T
eik

t
eitei

]
(19)

where tei is the nodal temperature vector of element i, and ktei is the normalized element thermal
stiffness matrix of element i, which is a function to the local element thermal conductivity κi, so

that ktei = ktei/κi. Here, t̃ei is the local quasi-temperature vector of element i, which is extracted
from the global quasi-temperature vector T̃ given by

T̃ =
[
Kt

ff
−1 ∂fobj

∂T f
0
]T

(20)

Taking the partial derivative of fobj with respect to ri, we have

∂fobj
∂ri

=

∑n
j=1(1− µ(1)

j )Tj −
∑n

j=1(1− µ(1)
j )Tj(∑n

j=1(1− µ(1)
j )
)2 ·

∂(1− µ(1)
i )

∂ri
= 0 (21)

For the partial derivative of fobj with respect to T f , knowing that T f = [t
(1)
f · · · t

(s)
f ]T has length

s, we have

∂fobj
∂T f

=
1∑n

i=1(1− µ(1)
i )
·


∑n

i=1(1− µ(1)
i )ϕ

(1)
i

...∑n
i=1(1− µ(1)

i )ϕ
(s)
i


s×1

, (22)

where

ϕ
(l)
i =

∂Ti

∂t
(l)
f

=


1/4 if ∂Ti

∂t
(l)
f

6= 0

0 if ∂Ti

∂t
(l)
f

= 0
, l = 1, · · · , s. (23)

2.5.2. Differentiating the Maximum Local Temperature Function

For the maximum local temperature function, shown in equation 11, we can express the aug-
mented Lagrangian expression as

Π(T f , qc, r) = g(T f , qc, r) + λTfR
t
f (T f , qc, r) + λTc R

t
c(T f , qc, r) (24)

Differentiating the above equation with respect to r, we have

dΠ

dr
=
∂g

∂r
+ λTf

∂Rt
f

∂r
+ λTc

∂Rt
c

∂r
+

[
∂g

∂T f
+ λTf

∂Rt
f

∂T f
+ λTc

∂Rt
c

∂T f

]
dT f
dr

+

[
∂g

∂qc
+ λTf

∂Rt
f

∂qc
+ λTc

∂Rt
c

∂qc

]
dqc
dr

(25)

To eliminate the implicit terms in equation 25, we obtain the adjoint solution for the parameters
λf and λc, which is given by{

λc = − ∂g
∂qc

= 0

λf = Kt
ff
−1
[
Kt

cf
∂g
∂qc
− ∂g

∂T f

]
= −Kt

ff
−1 ∂g

∂T f

(26)
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The differentiation of the augmented equation 24 then becomes

dg

dri
=

∂g

∂ri
−

[
Kt

ff
−1 ∂g

∂T f

0

]T
∂Kt

∂ri
T (27)

Similar to the previous case of equation 19, by substituting equation 7 into the equation above,
we can ultimately obtain the final form of the derivative of the augmented equation as

dg

dri
=

∂g

∂ri
−
∂µ

(j)
i

∂ri
κ(j)

[
t̃
T
eik

t
eitei

]
, (28)

where the definition of local quasi-temperature vector t̃ei, local temperature vector tei and local

stiffness matrix ktei are as defined previously in equation 19. In the sensitivity calculation for these
temperature-based constraint functions, we define global the quasi-temperature vector T̃ assembled
from the local quasi-temperature vector t̃ei as shown in equation 29 below.

T̃ =
[
Kt

ff
−1 ∂g

∂T f
0
]T

(29)

In the case of a single temperature limit T ∗ for all design materials, where g is as defined in

equation 11, the derivative ∂g/∂r
(j)
i is given by

∂g

∂ri
=


[∑m

j=n

(
(1− µ(1)

j )η TiT ∗

)p] 1
p
−1
· η(1− µ(1)

i )ηp−1
(
Ti
T ∗

)p ∂(1−µ(1)i )
∂ri

if i ∈ [n,m]

0 if i /∈ [n,m]
(30)

Substituting the average temperature Ti in each element i (as defined in equation 10) and knowing

that T f = [t
(1)
f · · · t

(s)
f ]T has length s, we obtain the partial derivative of g with respect to T f as

∂g

∂T f
=

[
m∑
i=n

(
(1− µ(1)

i )η
Ti
T ∗

)p] 1
p
−1

·


∑m

i=n

(
(1−µ(1)i )η

T ∗

)p
T p−1
i ϕ

(1)
i

...∑m
i=n

(
(1−µ(1)i )η

T ∗

)p
T p−1
i ϕ

(s)
i


s×1

(31)

where

ϕ
(l)
i =

∂Ti

∂t
(l)
f

=


1/4 if ∂Ti

∂t
(l)
f

6= 0

0 if ∂Ti

∂t
(l)
f

= 0
, l = 1, · · · , s. (32)

For the case where we require a unique temperature limit T ∗(j) for each design material, where

g is defined in equation 12, the derivative ∂g/∂r
(j)
i is given by

∂g

∂ri
=


[∑m

k=n

(∑4
j=2(µ

(j)
k )η Tk

T ∗(j)

)p] 1
p
−1
·
[∑4

j=2 η(µ
(j)
i )ηp−1

(
Ti

T ∗(j)

)p ∂µ(j)i
∂ri

]
if i ∈ [n,m]

0 if i /∈ [n,m]
(33)

Similar to the previous case, substituting the average element temperature Ti at each element i into
the constraint 12, we obtain the partial derivative of g with respect to T f for the material-specific
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temperature constraints as

∂g

∂T f
=

 m∑
i=n

 4∑
j=2

(µ
(j)
i )η

Ti

T ∗(j)

p
1
p
−1

·


∑m

i=n

∑4
j=2

(
(µ

(j)
i )η

T ∗(j)

)p
T p−1
i ϕ

(1)
i

...∑m
i=n

∑4
j=2

(
(µ

(j)
i )η

T ∗(j)

)p
T p−1
i ϕ

(s)
i


s×1

(34)

where

ϕ
(l)
i =

∂Ti

∂t
(l)
f

=


1/4 if ∂Ti

∂t
(l)
f

6= 0

0 if ∂Ti

∂t
(l)
f

= 0
, l = 1, · · · , s. (35)

2.6. Density Filtering

When implementing element-based topology optimization methods, results may be susceptible
to numerical instabilities such as checkerboarding and mesh-dependency [38]. To avoid such
phenomena, we employ a filtering method that is analogous to the density filter method [39] used
in the SIMP formulation. Here, we apply the filter to the parameters, r1 and r2. By introducing the
independent design parameter x1i and x2i ∈ [0, 1] for each element i, we can compute the effective
design parameters of r1i and r2i for element i as a weighted sum of the independent parameters for
all elements within a prescribed neighborhood of element i, as follows.

rji =
∑
k∈Ωi

ωikxji/
∑
k∈Ωi

ωik, for j = 1, 2; i = 1, 2, ...n (36)

where n is the number of elements in the finite element mesh, Ωi represents the neighborhood over
which the density filter is active, and ωik is a weight value that depends on the distance dik between
element i and element k as shown below, with d∗ denoting the radius of the filter neighborhood.

ωik =

{
d∗ − dik if dik < d∗

0 if dik ≤ d∗
(37)

3. Result and Discussion

3.1. Case 1: Optimal Thermal Response

Generally, topology optimization problems in which we seek to promote dissipation of thermal
energy (i.e. by minimizing average global temperature) result in a branch-like topological layouts.
To verify that our proposed methodology produces reasonable results that are consistent with
previous work on this topic, we first generate results for a purely thermal problem in which we
minimize the global average temperature in the structure, subject to a constraint on the total
material volume. The corresponding numerical optimization problem statement can be written as
follows.

minfobj =

∑n
i=1(1− µ(1)

i )Ti∑n
i=1(1− µ(1)

i )

s.t V ≤ 0.3

(38)

Here Ti is the average temperature within element i as defined in equation 10, and µ
(1)
i is the

activation function for the void phase. The fraction V is the volume ratio, which is defined as
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the fraction of the working domain that is occupied by non-void elements. Hence, the objective
function here represents the average temperature of the structure excluding the void regions.

The geometry and boundary conditions for the thermal design problem are shown in Fig. 1(a).
We first begin with a single-material case, using Beryllium Copper for the solid phase. The opti-
mization results are shown in Fig. 2. For illustrative purposes, we set the temperature in the void
area to be zero when plotting the temperature distribution in the optimized structures.

(a) Material distribution (b) Temperature Distribution

Figure 2: Optimized topology for the single material domain with thermal response, fobj = 84.12◦C

From the above figure we can see that the resulting material layout is indeed tree-like. We obtain
a similar result when solving the same design problem using a multimaterial approach. Figures
3 and 4 show the optimized material layout and temperature distribution for the multimaterial
problem.

(a) Material distribution by thermal conductivity (b) SAC305

(c) BC (d) Al-SiC

Figure 3: Optimized topology for the multimaterial domain with thermal response, fobj = 78.24◦C

Comparing the optimization result of the multimaterial case with the single material case, we
can see that the multimaterial design has lower average temperature. This result demonstrates that
by expanding the design space to allow for multiple materials, we are able to obtain superior designs
with improved thermal response. Meanwhile, we also observe that in the multimaterial case for
the pure thermal optimization problem, in order to lower the energy transfer, the optimizer tends
to choose material with low thermal conductivity throughout most of the structure; while in the
pure elastic optimization problem, the optimizer will have a preference for the stiffest possible
material, which generally translates to a high thermal conductivity. Hence, we can expect that
there will be a trade off in which the optimizer must balance the conflicting elastic and thermal
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design considerations. This tradeoff will be discussed further in the later sections.

Figure 4: Temperature distribution for the multimaterial domain with thermal repsonse

3.2. Optimal Design for Combined Elastic and Thermal Response

3.2.1. Case 2: Minimization of Structural Compliance and Average Temperature

In the case of a combined thermoelastic objective, we again begin with the single material case,
using Beryllium Copper for the solid material phase. The combined objective is stated in equation
9 and the numiercal optimization problem for both the single and multimaterial problem is given
by

min fobj =
F Tu

F Tu0

+

(∑n
i=1(1− µ(1)

i )Ti∑n
i=1(1− µ(1)

i )

)
/

(∑n
i=1(1− µ(1)

0i
)T0i∑n

i=1(1− µ(1)
0i

)

)
s.t V ≤ 0.3

(39)

Similar to the purely thermal design problem, the only optimization constraint is the constraint
on the volume fraction. For the elastic analysis, we assume plane stress conditions. The optimized
topology and temperature distribution are shown in Fig.5.

(a) Material distribution (b) Temperature Distribution

Figure 5: Optimized topology for the single material domain with combined thermoelastic objective, fobj =
0.1290, compliance= 14.21N·m, Tave = 76.13◦C

From this result we can see that in addition to the standard truss structure, the design contains
branches jutting out from the truss. These branches provide heat dissipation, which is demanded
by the thermal term in the combined objective function. For the multimaterial case, the result is
very similar, as shown in Fig.6 and Fig.7

From the multimaterial result, we can see that both the elastic compliance and the average
temperature field are lower than that of the single material design. This result is consistent with
our hypothesis that the multimaterial framework better enables the optimizer to pursue conflict-
ing design objectives by optimally distributing multiple design materials with disparate material
characteristics.

3.2.2. Case 3: Compliance Minimization with a Maximum Temperature Constraint

In Case 3, we minimize the structural compliance subject to a constraint on the maximum local
temperature along the top surface of the structure. The statement of this optimizing problem is
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(a) Material distribution by Young’s modulus (b) SAC305

(c) BC (d) Al-SiC

Figure 6: Optimized topology for the multimaterial domain with combined thermoelastic objective, fobj =
0.1156, compliance= 11.03N·m, Tave = 74.21◦C

Figure 7: Temperature distribution for the multimaterial domain with a combined objective function

shown below in equation 40.

min fobj = F Tu

s.t g =

[
m∑
i=n

(
(1− µ(1)

i )η
Ti
T ∗

)p]1/p

≤ 1

V ≤ 0.3

(40)

The maximum allowable temperature along the top surface is set to T ∗30◦C. The geometry and
boundary conditions for both the elastic and thermal problems is given in Fig. 1. Figure 8 shows the
optimized material distribution for the multimaterial design, while Fig. 9 displays the temperature
field within the optimized structure.

The result shows that the algorithm has successfully converged to a feasible design, with the
maximum temperature on the top surface reaching 27.6857◦C. In this case, the constraint is active,
however the maximum temperature is slightly below the prescribed threshold (T ∗ = 30◦C) due
the the conservative nature of the p-norm approximation. An interesting observation is that, to
satisfy the constraint, the optimizer will directly place more void elements at the area with highest
temperature, to impede propagation of heat energy to the rest of the structure. This means the
bottom area with a fixed temperature will be more slender than in the results obtained for cases 1
and 2.
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(a) Material distribution by Young’s modulus (b) SAC305

(c) BC (d) Al-SiC

Figure 8: Optimized topology for the multimaterial domain with a maximum temperature constraint, fobj =
18.23N·m

Figure 9: Temperature distribution for multimaterial domain with a maximum temperature constraint

3.2.3. Case 4: Compliance Minimization with a Material-Specific Temperature Constraint

In the final example, we solve the same thermoelstic design problem described above, however
we implement a material-specific constraint on the local temperature, which is defined in equation
12. As in the previous case, we minimize compliance subject to a 30% volume constraint. The
maximum allowable temperature throughout the domain is set to 35% of the melting point of each
material, since this is the temperature at which creep effects can be observed in metals [40]. Since
35% of the melting point of SAC305 is too low to set as a restriction, we choose an alternative
material, Magnesium alloy, AZ91, whose Young’s modulus and thermal conductivity are very close
to SAC305, but has a higher melting point. The material properties used in this case are shown
below in Table 2.

Material Void AZ91 BC Al-SiC

E(GPa) 10−9 42 131 188

κ(W/(m·◦C)) 0.5 70 105 200

Melting Point(◦C) - 550 955 613

Creep constraint(◦C) - 15.0 156.0 37.1

Table 2: Material properties

In this problem, the fixed (i.e. applied) temperature was set to 37.5% of the melting point of the
stiffest material (Al-SiC), which yields T = 63.5◦C at the bottom center of the domain boundary.
The results of this case are shown in Fig.10 and Fig.11.

14



(a) Material distribution by Young’s modulus (b) AZ91

(c) BC (d) Al-SiC

Figure 10: Optimized topology for the multimaterial domain with material-specific temperature constraints, fobj =
17.34N·m

Figure 11: Temperature distribution for multimaterial domain with material-specific temperature constraints

In this result, the highest temperature and the lowest temperature of each material are shown
below in Table 3. As shown in the table, the optimized design is feasible, with none of the material-
specific temperature limits being breached. In this example, the constraint is active only for the
middle material, Al-SiC, while the material with the highest melting point remains well below its
own prescribed temperature limit, but does reach temperatures above the maximum for the other
two materials. This example demonstrates that we can effectively enforce multiple material-specific
temperature limits using a single global constraint function.

Material AZ91 BC Al-SiC

Max Temperature(◦C) - 63.50 37.09

Max allowable Temperature(◦C) 15.0 156.0 37.1

Table 3: Maximum and minimum temperatures of each design material

3.3. An Alternative Domain Geometry

To further validate the proposed algorithm, we test it on a second design problem with an
alternative domain geometry. Specifically, we seek to verify the multimaterial case with a single
temperature constraint on the maximum temperature at the top surface of the domain, as defined in
equation 40. The new design domain is a 6m×6m square domain with all the remaining parameters
unchanged from the previous example. The load p still has a magnitude of 100kN, and the fixed
temperature is set to T = 100◦C at the bottom center. The heat flux remains q = 50w/m2. The
available design materials are identical to those used in case 3, SAC305, Beryllium Copper, Al-SiC
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plus the void phase. The optimized results for the square domain, under a temperature constraint
of T ∗ = 30◦C are shown in Fig.13 and Fig.14.

(a) Elastic boundary conditions (b) Thermal boundary conditions

Figure 12: Geometry and boundary conditions for the thermoelastic problem with square design domain

The results are similar to those obtained in Case 3 above, with the constraint being active, and
a maximum temperature of 26.5342◦C on the top surface. Here again, the optimizer has placed
the material with the highest stiffness at the areas of high stress, while a slender bar component is
placed along the bottom surface to slow down energy transfer.

4. Conclusions

We have presented a novel method for multimaterial topology design for optimal elastic and
thermal responses. The uncoupled elastic and steady-state thermal responses were simulated using
linear finite element analysis, and the material distribution was parameterized using the SFP for-
mulation. Each design material was characterized according to its elastic modulus and its thermal
conductivity. Results confirmed that for design problems that combine elastic and thermal con-
siderations, the multimaterial formulation produced superior structures, as the optimizer was able
to optimally allocate multiple materials with disparate thermal and elastic properties to pursue
conflicting design goals.

In addition to optimizing a hybrid objective function that combined the elastic compliance and
average temperature, we also optimized for elastic compliance subject to a constraint on the max-
imum local temperature along the top surface of the design domain. Furthermore, we performed
a similar optimization in which we enforced material-specific maximum temperature limits. For
this task we implemented a novel formulation in which the average temperature within each ele-
ment was expressed as a fraction of the creep limit for the specific material within that element,
and the resulting normalized temperature values were aggregated using a the p-norm function to
obtain a global constraint function. Results demonstrated that this formulation could be used to
effectively generate feasible multimaterial structures in which each material domain remains within
its prescribed temperature range.
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(a) Material distribution by Young’s mod-
ulus

(b) SAC305

(c) BC (d) Al-SiC

Figure 13: Optimized topology for multimaterial square domain with a maximum temperature constraint

Figure 14: Temperature distribution for the multimaterial square domain with a maximum temperature constraint
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