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Abstract
Topology optimization (TO) is commonly applied to design the unit cells of periodic structures. For example, metamaterials, 
lattice structures, phononic crystals (PhC), and photonic crystals (PC) have all been previously designed via TO. Unfor-
tunately, the optimal structures for certain design objectives, e.g., bandgaps, are often impossible to manufacture as they 
have disconnected regions or “islands” of solid material (ISM) that are not self-supporting. Further, designs with enclosed 
void space (EVS) are problematic for additive manufacturing (AM) since support material or pre-sintered powder cannot be 
removed after manufacturing. We present a series of constraints that may be incorporated into any TO framework to ensure 
structures are self-supporting without enclosed voids. Additionally, we employ homogenization-based constraints that allow 
the designer to tune the elastic stiffness and isotropy of the optimized design. The proposed constraints are evaluated on 
example microstructures and utilized in a simple optimization test problem to highlight their abilities and limitations so that 
guidelines for appropriate combinations of constraints may be proposed. Effective constraint combinations are demonstrated 
on the design of 3D photonic crystals for maximum bandgap subject to manufacturing and stiffness constraints.

Keywords Topology optimization · Manufacturing constraints · Periodic structures · Metamaterials · Photonic crystals · 
Homogenization

1 Introduction

The design of periodic unit cells with inverse homog-
enization (Sigmund 1994) applies topology optimization 
(Bendsøe and Kikuchi 1988) to determine the optimal 

microstructure for a particular application. For example, it 
is used to design metamaterials with seemingly nonphysi-
cal effective properties, such as negative Poisson’s ratio 
(Larsen et al. 1997; Babaee et al. 2013; Andreassen et al. 
2014) and simultaneous negative bulk modulus and mass 
density (Ding et al. 2007). Inverse homogenization is also 
used to tune metamaterials to match prescribed properties 
(Sigmund 1995) and to obtain theoretically optimal proper-
ties (Sigmund 2000). The method is becoming more com-
mon in three dimensional (3D) applications (Andreassen 
et al. 2014) as computing power continues to advance, and 
the interest in lattice materials continues to grow (Messner 
2016). Moreover, it is not limited to the realm of mechan-
ics; designs for thermal expansion (Sigmund and Torquato 
1996), thermal conductivity (de Kruijf et al. 2007), fluid 
permeability (Guest and Prévost 2007), and magnetic per-
meability (Diaz and Sigmund 2010) have also been gener-
ated, and multifunctional designs are becoming increasingly 
popular (Guest and Prevost 2006; de Kruijf et al. 2007). 
Interested readers are directed to an exhaustive review of 
micro-architected design (Osanov and Guest 2016).
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Similar to inverse homogenization, topology optimization 
has been used to design the periodic unit cells of phononic 
and photonic crystals (Li et al. 2019). Early studies designed 
two-dimensional (2D) phononic (Sigmund and Jensen 2003) 
and photonic crystals (Kao et al. 2005; Men et al. 2010), and 
more recently 3D photonic crystals (Men et al. 2014; Meng 
et al. 2018; Swartz et al. 2021). Bandgap optimizations pre-
sent an obvious need for material connectivity constraints. 
Indeed in stiffness optimizations, disconnected regions of 
material never appear as they increase mass but not stiff-
ness. However, in bandgap optimization problems it has 
been demonstrated that disconnected structures are often 
beneficial (Kao et al. 2005; Men et al. 2010; Swartz et al. 
2021). Such designs with islands of solid material (ISM) 
are problematic as they cannot be manufactured. Addition-
ally, enclosed void space (EVS), also common to bandgap 
optimized designs (Men et al. 2014; Swartz et al. 2021), 
cannot be easily manufactured. Further, photonic crystals, 
as well as other periodic structures, require a minimum level 
of stiffness to operate properly. For example, an optics sys-
tems designed for a spacecraft would need to maintain its 
intended shape while subjected to both inertial loads and 
surface tractions. This will not be possible if the designs 
do not exhibit some requisite level of stiffness. Therefore, it 
is important to develop constraints that allow designers to 
tune the stiffness of periodic structures for their particular 
applications.

Many design formulations have been presented to ensure 
manufacturability in density-based topology optimization 
(Lazarov et al. 2016; Plocher and Panesar 2019). For exam-
ple, techniques have been proposed to limit the overhang 
angle of a structure to alleviate the need for support material 
in additive manufacturing (AM) (Leary et al. 2014; Gaynor 
and Guest 2016; Qian 2016; Allaire et al. 2017; Liu and 
To 2017; Zhang et al. 2019); this topic has been intensely 
studied and is not the focus of this work. Previous work has 
used a mechanical eigenvalue constraint to avoid ISM in 2D 
periodic structures  (Wang et al. 2011). We expand on this 
work by implementing a mechanical eigenvalue constraint 
for 3D periodic structures and point out a fundamental flaw 
in this constraint function. Effective thermal conductivity 
has also been used as a design constraint to enforce con-
nected structures  (Andreasen et al. 2014). We use a similar 
technique wherein we compute the effective stiffness ten-
sor of the unit cell which allows us to constrain bulk stiff-
ness, which behaves similarly to thermal conductivity, and/
or shear stiffness. The capabilities and limitations of our 
effective property constraints are examined. Additionally, 
the virtual temperature method (VTM) (Liu et al. 2015) 
prevents EVS, which is difficult to manufacture with most 
AM processes. We present various constraints that can be 
integrated into topology optimization frameworks to ensure 
that optimal microstructures do not contain neither ISM nor 

EVS. Our techniques do not require changing the design 
parameterization or applying a filter. Further, since several 
of them are linked to mechanical stiffness we will investi-
gate the effect of adding stiffness requirements to photonic 
bandgap structures. We will thus be able to generate manu-
facturable photonic crystal structures with prescribed levels 
of stiffness and probe the trade-off between these two often 
conflicting objectives.

We begin by extending the VTM (Liu et al. 2015) to pre-
vent ISM by flipping the material properties in Sect. 2.1.1. 
Then, we further extend the VTM to eliminate both EVS 
and ISM from periodic structures in Sect. 2.1.2. We alter-
natively prevent ISM by enforcing a mechanical eigenvalue 
constraint described in Sect. 2.2 and ensure self-supporting 
structures by enforcing a self-weight compliance constraint 
described in Sect. 2.3. Finally, we compute the homogenized 
(Allaire 2002), or effective, constitutive tensor of our unit 
cells from which we derive bulk stiffness, shear stiffness, and 
isotropy constraints in Sect. 2.4. We highlight the novelty 
of our VTM extension for ISM prevention, the use of VTM 
with periodic structures, the extension of the mechanical 
eigenvalue constraint to three dimensions, and the develop-
ment of the self-weight compliance constraint. Additionally, 
we present invariant bulk and shear modulus definitions that 
are easily differentiable making them amenable to inverse 
homogenization. The proposed constraints are quantitatively 
compared for a series of contrived unit cells to demonstrate 
their behavior in Sect. 3, where guidelines for the appropri-
ate constraint choices are also presented to meet particular 
design goals. A simple optimization test problem is pre-
sented to display the efficacy of each constraint for unit cell 
design in Sect. 4. The optimal topologies obtained when 
using each design constraint are compared to demonstrate 
the behavior a designer can expect when using each func-
tion in a computational design framework. Self-support-
ing, manufacturable photonic crystals are designed for the 
first time to further exemplify the proposed constraints in 
Sect. 5. Finally, novel 3D photonic bandgap structures with 
prescribed minimum bulk stiffness levels are presented to 
illustrate a feasible bandgap-bulk stiffness design space in 
Sect. 6.

2  Constraint formulations

2.1  Virtual temperature method

The VTM (Liu et al. 2015), equivalently formulated as the 
virtual scalar field method (Li et al. 2016), was proposed as 
a technique to prevent EVS in topology optimized designs. 
A virtual “temperature” field is computed which satisfies the 
steady-state heat conduction equation
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where k is the conductivity, Q is a heat source, and T is the 
virtual temperature field at spatial coordinate x . Although 
we are designing a periodic structure, the domain Ω consid-
ered for this constraint is just a few unit cells and we do not 
enforce periodic boundary conditions. This point is elabo-
rated on in Sect. 2.1.2.

This technique works by placing the heat source and 
highly conductive material in the void phase, while placing 
insulating material and no heat source in the solid mate-
rial. Thus, a much larger maximum domain temperature is 
observed when a region of void space is disconnected from 
the domain boundary !Ω since the heat is not be able to dis-
sipate as it would if all of the void space was in contact with 
the boundary !Ω . Specifically, the conductivity is computed 
as a function of the solid phase volume fraction ! ∈ [0, 1] 
according to a SIMP-like (Bendsøe 1989) interpolation

so that k = k0 for ! = 0 and k = !k0 for ! = 1 , i.e., we place 
highly conductive material k0 in the ! = 0 void phase and 
insulating material (! ≪ 1) in the ! = 1 solid phase. We 
should note that these VTM material properties are not 
physical, e.g., we would not expect void space to be more 
conductive than solid material. For reasons below, we assign 
q > 1.

The heat source should only be present in the void 
phase and hence it is also a function of ! . However, it 
was observed in practice that using a linear interpolation, 
i.e., Q(!) = (1 − !)Q0 where Q0 is the heat source value of 
the void phase, caused nonphysical behavior, e.g., negative 
temperatures, in regions with intermediate volume fraction. 
Fortunately, a modified SIMP interpolation scheme origi-
nally developed to remove spurious eigenmodes caused by 
low volume fraction elements (Du and Olhoff 2007) was 

(1)
∇ ⋅ (k(x)∇T(x)) + Q(x) = 0 for x ∈ Ω

T(x) = 0 for x ∈ !Ω,

(2)k(!) = "k0 + (1 − !)q
(
k0 − "k0

)
,

able to resolve this issue. Figure 1 presents interpolations 
and their derivatives. We see that very low volume frac-
tions are heavily penalized with the modified SIMP, but 
importantly the interpolation is C1 continuous. We invert 
the modified SIMP interpolation so that the heat source in 
high volume fraction regions is penalized, i.e.,

where r > q , !U is a volume fraction upper bound, and the 
constants c1 and c2 are selected to ensure the material inter-
polation scheme remains C1 continuous. To enforce this con-
tinuity we require that both expressions in Eq. (3) produce 
the same value of Q

(
!U

)
 and Q′

(
!U

)
 from which we obtain

and

Note that for any choice of !U ∈ (0, 1) we will obtain Q = Q0 
for ! = 0 and Q = 0 for ! = 1.

Selecting exponent values q > 1 serves to penalize inter-
mediate volume fractions ! ∈ (0, 1) by reducing their con-
ductivity-to-heat source ratios. This is directly analogous to 
the SIMP method for compliance minimization (Bendsøe 
1989) wherein the stiffness of intermediate volume fraction 
material is disproportionately reduced relative to its mass so 
that optimal solutions contain only ! = 0 or ! = 1 . Here, 
the conductivity of intermediate volume fraction material is 
disproportionately reduced relative to its heat source so that 
optimal solutions prefer ! = 0 or ! = 1 , since the interme-
diate volume fraction is inefficient at lowering the domain 
temperature.

The boundary condition on !Ω allows heat to escape 
from Ω . Thus, EVS is easily identified by the presence of 
regions with high temperatures. We compute the maximum 

(3)Q(!) =

{(
c1(1 − !)r + c2(1 − !)r+1

)
Q0 ! ≥ !U

(1 − !)Q0 ! < !U

(4)c1 = r
(
1 − !U

)1−r

(5)c2 = (1 − r)
(
1 − !U

)−r
.

Fig. 1  A comparison of volume 
fraction interpolations
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temperature in the domain using the differentiable p-norm 
function

from which we formulate an optimization constraint as

where !vt is a user-specified parameter and "̄vt is computed 
by Eq. (6) after solving Eq. (1) with !(x) = 0 for all x ∈ Ω so 
that the constraint limit is not problem dependent.

Henceforth we will use the subscript vtv when Eq. (7) is 
applied with the conductive material and heat source placed 
in the void phase as described above, and we will use the 
subscript vts when Eq. (7) is applied with the conductive 
material and heat source placed in the solid material as 
described in Sect. 2.1.1.

2.1.1  Extending the VTM to identify ISM

The VTM presented in Sect. 2.1 provides a quantitative 
means of identifying and preventing EVS. We propose a 
simple extension of this method to identify and prevent ISM. 
By simply inverting the interpolations in Eqs. (2) and (3) to

and

respectively, we place the conductive material and heat 
source in the solid rather than the void region. Repeating 
our continuity requirements we obtain

and

(6)!vt =

(
∫Ω

T(x)p dΩ

) 1

p

,

(7)!vt ≤ "vt !̄vt ,

(8)k(!) = "k0 + !q
(
k0 − "k0

)

(9)Q(!) =

{(
c1!

r + c2!
r+1

)
Q0 ! ≤ !L

!Q0 ! > !L

(10)c1 = r!1−r
L

(11)c2 = (1 − r)!−r
L
.

In this way the maximum temperature will be large when we 
have regions of solid material not connected to a boundary. 
We can simultaneously restrict EVS and ISM by solving 
Eq. (1) twice; once using Eqs. (2) and (3) and again using 
Eqs. (8) and (9) and constraining the maximum temperature 
of each field via Eq. (7).

2.1.2  Extending to periodic domains

To the authors’ knowledge the VTM has thus far only been 
applied to finite domains, although the effect of different 
boundary conditions has been explored (Li et al. 2018). We 
propose a technique to use VTM to prevent EVS and ISM in 
periodic structures. Consider a 2D microstructure consisting 
of solid material and a square array of circular voids. If we 
apply the VTM to the unit cell pictured in Fig. 2a, we would 
identify EVS. However, if we apply the VTM to the unit cell 
pictured in Fig. 2b, we will not identify EVS even though 
both unit cells represent the same periodic structure. Thus, 
we have an unacceptable problem; the behavior of our con-
straint function depends on the unit cell choice. To resolve 
this issue, we simply consider a 2d array of unit cells, where 
d is the spatial dimension of our design problem. Indeed, 
consider the unit cell arrays highlighted in Fig. 3a and b. 
Although the number of “hot” (denoted by red) regions will 
be different, the behavior of the constraint will be consistent, 
i.e., EVS will be identified in either case. In fact, any valid 
array of 2d unit cells will allow the VTM to appropriately 
identify EVS and ISM. We note that it would be preferable to 
compute the virtual temperature field over a single unit cell 
with periodic boundary conditions, but this presents a prob-
lem. Essential boundary conditions of T = 0 are required to 
dissipate the heat source and obtain the desired constraint 
behavior when the void space is not enclosed. However, if 
we place periodic boundary conditions on the exterior of our 
domain we do not know where to place the essential bound-
ary condition because the location of solid/void space is not 
known a priori. Indeed, arbitrarily defining this essential 
boundary condition region would have the undesirable effect 
of dictating the resulting optimized design.

Fig. 2  Example behavior when 
a single unit cell is analyzed 
with VTM

T=0

T=0

T=0T=0

Ω Ω

solid
( = 1)

void
( = 0)

≫

(a) Example unit cell # 1

T=0

T=0

T=0T=0

Ω

Ω

solid
( = 1)

void
( = 0)

(b) Example unit cell # 2
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2.1.3  Sensitivity analysis

We must compute the sensitivities of our constraint functions 
with respect to design variables to solve our design optimi-
zation problem via nonlinear programming (NLP). Here we 
derive the sensitivities of our constraint functions with respect 
to the volume fraction field ! . However, we emphasize that 
other design parameterizations could be employed, e.g., pro-
jection methods (Watts and Tortorelli 2017) or B-splines (Qian 
2013).

We evaluate the variation of Eq. (6) to obtain

where we notice the implicit sensitivity !T  is problematic to 
compute analytically. We use the adjoint method to address 
this issue wherein we restate Eq. (1) in its weak form, i.e., 
we find T ∈ H = {T ∈ H1;T = 0 on !Ω} for an H1 Hilbert 
space such that

for all w ∈ H . Differentiating the above gives the problem 
of finding !T ∈ H satisfying

for all w ∈ H . We now add Eq. (14), i.e., zero, to Eq. (12) 
to obtain

(12)!"vt =

(
∫Ω

T(x)p dΩ

) 1

p
−1

∫Ω

T(x)p−1!T(x) dΩ,

(13)−∫Ω

∇w(x) ⋅ k(x)∇T(x) dΩ + ∫Ω

w(x)Q(x) = 0

(14)

− ∫Ω

∇w(x) ⋅ !k(x)∇T(x) dΩ − ∫Ω

∇w(x) ⋅ k(x)∇!T(x) dΩ

+ ∫Ω

w(x)!Q(x) dΩ = 0

(15)

!"vt =

(
∫Ω

T(x)p dΩ

) 1

p
−1

∫Ω

T(x)p−1!T(x) dΩ

− ∫Ω

∇w(x) ⋅ !k(x)∇T(x) dΩ

− ∫Ω

∇w(x) ⋅ k(x)∇!T(x) dΩ + ∫Ω

w(x)!Q(x) dΩ,

and notice that upon solving for w ∈ H such that

for all !T ∈ H we can remove !T  from Eq. (15). Subse-
quently substituting this w into Eq. (15) yields

We parameterize ! to be piece-wise uniform over the finite 
element mesh, i.e., each finite element Ωi in Ω is assigned a 
distinct volume fraction !i . As such

where we note that

and

when using the interpolation schemes in Eqs. (2) and (3), 
i.e., when restricting EVS. Similarly,

and

when using the interpolation schemes in Eqs. (8) and (9), 
i.e., when restricting ISM.

(16)
∫Ω

∇!T(x) ⋅ k(x)∇w(x) dΩ =

(
∫Ω

T(x)p dΩ

) 1

p
−1

∫Ω

!T(x)T(x)p−1 dΩ

(17)
!"vt = −∫Ω

∇w(x) ⋅ !k(x)∇T(x) dΩ + ∫Ω

w(x)!Q(x) dΩ.

(18)

D!vt
D"i

= −∫Ωi

∇w(x) ⋅
Dk(x)

D"i

∇T(x) dΩ + ∫Ωi

w(x)
DQ(x)

D"i

dΩ,

(19)
Dk

D!i

= −q
(
1 − !i

)q−1(
k0 − "k0

)

(20)

DQ

D!i

=

{(
−c1q

(
1 − !i

)r−1
− c2(r + 1)

(
1 − !i

)r)
Q0 !i ≥ !U

−Q0 !i < !U

(21)
Dk

D!i

= q!
q−1

i

(
k0 − "k0

)

(22)DQ

D!i

=

{(
c1r!

r−1 + c2(q + 1)!r
)
Q0 !i ≤ !L

Q0 !i > !L

Fig. 3  Example behavior when 
a 22 unit cell array is analyzed 
with VTM

T=0

T=0

T=0T=0

ΩΩ

solid
( = 1)

void
( = 0)

≫

(a) Example unit cell array # 1

T=0

T=0

T=0T=0

Ω

Ω

solid
( = 1)

void
( = 0)

≫

(b) Example unit cell array # 2
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2.2  Mechanical eigenvalues

Another constraint that identifies ISM is derived from an 
eigenvalue analysis that consists of solving for eigenpairs (
!j, uj

)
 ordered such that !1 ≤ !2 ≤ ... ≤ !n that satisfy

where ℂ is the fourth-order elasticity tensor, ! is the mass 
density, u is the displacement, Ω is a periodic domain, i.e., 
a unit cell, ℤ is the set of all integers, and ak are the lattice 
vectors. Thus, we are employing periodic boundary condi-
tions to appropriately model the response of our infinitely 
periodic structure. We use the SIMP interpolation (Bendsøe 
1989) for the constitutive tensor according to

so that we place a stiff material in the solid phase, 
i.e., ℂ(1) = ℂ0 and a weak material in the void phase, 
i.e., ℂ(0) = !ℂ0 , where ℂ0 is the elasticity tensor of the solid 
material. We use the modified SIMP (Du and Olhoff 2007) 
to interpolate the mass density according to

wherein c1 and c2 are given in Eqs.  (10) and (11), 
respectively.

We know that !j ≥ 0 since the left-hand side opera-
tor in Eq. (23) is positive semi-definite, and we expect 3 
zero-valued eigenvalues corresponding to rigid translation, 
i.e., !1 = !2 = !3 = 0 . We show in Sect. 3 that we can iden-
tify ISM by observing the magnitude of the fourth-smallest 
eigenvalue. There will be nearly zero-valued eigenvalues !j 
for j = 4, 5,… , n when ISM are present, where the lower 
limit of !4 is determined by the selection of ! . As such, we 
estimate the fourth-smallest eigenvalue using a p-norm 
function

and subsequently enforce the optimization constraint

where !eig is a user-specified parameter and "̄eig is com-
puted from Eq. (26) with the entire domain set to ! = 1 . 
We use Eq. (26) rather than !eig = "4 since Eq. (26) is dif-
ferentiable even if !4 is a degenerate eigenvalue, i.e., even if 
!4 = !5 ≤ ... ≤ !n . We necessarily have !3 < !4 due to the 
ersatz material usage and therefore Eq. (26) is a symmetric 

(23)
∇ ⋅ ℂ(x)

[
∇uj(x)

]
= !j"(x)uj(x) for x ∈ Ω

uj(x) = uj

(
x + nak

)
for n = ℤ,

(24)ℂ(!) = "ℂ0 + !q
(
ℂ0 − "ℂ0

)
,

(25)!(") =

{(
c1"

r + c2"
r+1

)
!0 " ≤ "L

"!0 " > "L

,

(26)!eig =

(
n∑
i=4

"
−p

i

)− 1

p

,

(27)!eig ≥ "eig!̄eig,

polynomial of a distinct set of eigenvalues and hence dif-
ferentiable (Gravesen et al. 2011). We do not use essential 
boundary conditions to constrain the rigid body translation 
modes for the reason discussed in Sect. 2.1.2. This issue is 
also discussed in a previous study  (Andreasen et al. 2014).

We compute the sensitivity of the eigenvalues !j accord-
ing to

For our discretization this gives

where

and

The derivative of Eq. (26) is computed as

and the derivative D!eig
D"i

 follows from an application of the 
chain rule.

2.3  Self-weight compliance

The periodic VTM presented above is very effective at iden-
tifying ISM and EVS. We will see in Sect. 3, however, a lack 
of ISM does not guarantee a structure is self-supporting. 
Thus, we propose a self-weight compliance constraint to 
ensure the unit cell is adequately supported. To do this we 
solve for the displacements ui resulting from design-depend-
ent body loads in each spatial dimension ei according to

where the domain Ω is a single unit cell. The unit cell is 
not subject to periodic boundary conditions, but rather zero 

(28)

!"j =

(
∫Ω

uj(x) ⋅ #(x)uj(x)dΩ

)−1(
∫Ω

∇uj(x) ⋅ !ℂ(x)
[
∇uj(x)

]
dΩ

− "j ∫Ω

uj(x) ⋅ !#(x)uj(x)dΩ

)
.

(29)

D!j

D"i

=

(
∫Ω

uj(x) ⋅ #(x)uj(x)dΩ

)−1(
∫Ωi

∇uj(x) ⋅
Dℂ(x)

D"i

[
∇uj(x)

]
dΩ

− !j ∫Ωi

uj(x) ⋅
D#(x)

D"i

uj(x)dΩ

)
.

(30)
Dℂ

D!i

= q!
q−1

i

(
ℂ0 − "ℂ0

)

(31)D!

D"i

=

{(
c1r"

r−1
i

+ c2(r + 1)"r
i

)
!0 "i ≤ "L

!0 "i > "L

.

(32)D!eig

D"j
=

(
M∑
i=4

"
−p

i

)− 1

p
−1(

"
−p−1

j

)
.

(33)
∇ ⋅ ℂ(x)

[
∇ui(x)

]
+ !(x)ei = 0 for x ∈ Ω

ui(x) = 0 for x ∈ Γi,
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displacement boundary conditions applied to Γi . We define 
Γi as the face that is “below” the unit cell, i.e., the face with 
an outward normal vector of −ei where ei is a canonical basis 
vector, cf. Fig.  4. We again use SIMP (Bendsøe 1989) to 
interpolate the constitutive tensor from Eq. (24) and the 
modified SIMP (Du and Olhoff 2007) to interpolate the mass 
density from Eq. (25). After evaluating the displacements ui , 
we evaluate the mean compliance

The value of !swc will be small when the structure is fully 
supported, otherwise it will be very large. Knowing this we 
enforce the self-weight compliance constraint

where !swc is a user-specified parameter and "̄swc is computed 
by Eq. (34) with ! = 1 prescribed on the entire domain.

The sensitivity of !swc is obtained via the adjoint method 
(Bendsøe and Sigmund 2004) as

from which we obtain

where Dℂ
D!i

 and D!
D"i

 follow from Eqs. (30) and (31).
Note that we must again consider an array of 2d unit 

cells to ensure that our choice of unit cell does not affect 
the intent of the constraint function, cf. Fig. 3. In our 
numerical examples, however, we will only consider a 
single unit cell due to the imposed orthorhombic sym-
metry on the unit cell which eliminates the constraint’s 

(34)!swc = −

3∑
i=1

∫Ω

"(x)ei ⋅ ui(x)dΩ.

(35)!swc ≤ "swc!̄swc,

(36)
!"swc = −2

3∑
i=1

∫Ω

!#(x)ei ⋅ ui(x)dΩ

−

3∑
i=1

∫Ω

∇ui(x) ⋅ !ℂ(x)
[
∇ui(x)

]
dΩ,

(37)

D!swc

D"i

= −2

3∑
i=1

∫Ωi

D#(x)

D"i

ei ⋅ ui(x)dΩ

−

3∑
i=1

∫Ωi

∇ui(x) ⋅
Dℂ(x)

D"i

[
∇ui(x)

]
dΩ.

dependence on the cell. Unfortunately, this simplification 
is not possible with the VTM.

2.4  Effective stiffness constraints

In addition to the previously discussed EVS, ISM, and 
self-supporting constraints, we investigate constraints 
derived from the effective stiffness of our unit cell. Fol-
lowing classical homogenization theory (Allaire 2002), we 
first solve a series of unit cell problems for the character-
istic displacements ! ij

where Eij ≡ ei ⊗ ej is a unit “test” strain and Ω is the unit 
cell subject to periodic boundary conditions, c.f. Eq. (23). 
Upon obtaining each unique ! ij , i.e., 6 displacement solu-
tions in 3D, the components of the homogenized stiffness 
tensor ℂh are computed according to

where |Ω| is the volume of the unit cell. We evaluate the 
design sensitivity of ℂh using the adjoint technique (Allaire 
2002; Watts and Tortorelli 2016) according to

The interpolation of ℂ from Eq.  (24), and therefore the 
derivative in Eq. (30), are again used here. We investigate a 
number of constraint functions that depend explicitly on the 
components of ℂh.

2.4.1  Bulk modulus

The bulk modulus measures the volume change due to a 
uniform pressure loading. We express the bulk modulus as 
a function of the homogenized stiffness tensor according to

noting that we drop the superscript h for brevity and I is the 
identity 2-tensor that represents a unit hydrostatic pressure. 
The derivative of the bulk modulus with respect to a com-
ponent of ℂ is computed as

(38)
∇ ⋅ ℂ(x)

[
E
ij + ∇! ij(x)

]
= 0 for x ∈ Ω

uj(x) = uj

(
x + nak

)
for n = ℤ,

(39)ℂ
h
ijkl

=
1

|Ω| ∫Ω

E
ij
⋅ ℂ(x)

[
E
kl + ∇! kl(x)

]
dΩ,

(40)
!ℂh

ijkl
=

1

|Ω| ∫Ω

(
E
ij + ∇! ij(x)

)
⋅ !ℂ(x)

[
E
kl + ∇! kl(x)

]
dΩ.

(41)!(ℂ) =
1

I ⋅ ℂ−1[I]
,

(42)
D!(ℂ)

Dℂijkl

=
1(

I ⋅ ℂ−1[I]
)2
(
I ⋅

(
ℂ

−1 Dℂ

Dℂijkl

ℂ
−1

)
[I]

)
.

Fig. 4  Locations (in gray) of essential boundary conditions when 
computing !swc



 K. E. Swartz et al.

1 3

  129  Page 8 of 20

Following our previous conventions we define the bulk 
modulus constraint

where !" is a user-specified parameter and "̄ is computed by 
prescribing ! = 1 throughout the domain, or equivalently 
computed for an isotropic solid constituent material from its 
Young’s modulus E and Poisson’s ratio ! as "̄ = E

3(1−2#)
.

2.4.2  Shear modulus

We will define a shear modulus that is analogous to our bulk 
modulus definition in Eq. (41). To quantify shear stiffness 
we define a shear stress tensor

and express a “mean” shear modulus

The derivative of the shear modulus with respect to a com-
ponent of ℂ is computed from Eq. (43) with S replacing I , 
i.e.,

Using the above, we define the shear modulus constraint

where !" is a user-specified parameter and "̄ is computed by 
prescribing ! = 1 throughout the domain, or equivalently 
computed for an isotropic solid constituent material as 
"̄ = E

2(1+#)
.

2.4.3  Anisotropy

We also require our periodic structures to exhibit some 
degree of isotropy. A number of anisotropy indices have 
been presented in the literature, including the universal 
elastic anisotropy index (Ranganathan and Ostoja-Starze-
wski 2008) defined by

(43)! ≥ "!!̄,

(44)S =
1√
3

⎡
⎢
⎢⎣

0 1 1

1 0 1

1 1 0

⎤
⎥
⎥⎦

(45)!(ℂ) =
1

S ⋅ ℂ−1[S]
.

(46)
D!(ℂ)

Dℂijkl

=
1(

S ⋅ ℂ−1[S]
)2
(
S ⋅

(
ℂ

−1 Dℂ

Dℂijkl

ℂ
−1

)
[S]

)
.

(47)! ≥ "! !̄ ,

(48)AU =
!V

!R
+ 5

"V

"R
− 6,

where the superscripts V and R denote Voigt and Reuss esti-
mates, respectively. These estimates are computed directly 
from the components of ℂ (Hill 1952), and so the sensitivity 
analysis of AU is a simple matter of arithmetic that is omit-
ted here. The universal elastic anisotropy index is motivated 
from the fact that the Voigt and Reuss estimates of bulk and 
shear moduli are equal when a material is isotropic, thus by 
measuring the ratio between these estimates it is possible 
to quantify how close a material is to isotropic. The univer-
sal elastic anisotropy index was later extended to compute 
the distance between the Voigt and Reuss estimates in log-
Euclidean space (Kube 2016) as

as an attempt to physically describe the level of anisotropy. 
We again omit its trivial sensitivity analysis. Similarly, the 
distance between a stiffness tensor ℂ and the closest iso-
tropic tensor (Moakher and Norris 2006) can be computed 
by

where ℂiso is the closest isotropic stiffness tensor to ℂ in 
log-Euclidean space. It was proven that

where the projection ℙiso is defined in Moakher and Norris 
(2006) and hence we can compute the anisotropy measure as

To use AD in a constraint we must compute its sensitivity 
with respect to ℂ . We define ! = ℙiso log(ℂ) − log(ℂ) and 
derive the sensitivity as

for an arbitrary 4th-order tensor ! . Using the arbitrariness 
of ! , we obtain

Note that we obtain the simplification using the projection 
properties

(49)AL =

√
log2

(
!V

!R

)
+ 5 log2

(
"V

"R

)

(50)AD = || log(ℂiso
)
− log(ℂ)||,

(51)log
(
ℂ

iso
)
= ℙ

iso log(ℂ),

(52)AD = ||ℙiso log(ℂ) − log(ℂ)||.

(53)

DAlog

Dℂ
⋅ " =

1

2||#||
(

D

Dℂ
(# ⋅ #)

)
⋅ "

=
1

2||#||2# ⋅

D#

Dℂ
["]

=
1

||#||
((

D#

Dℂ

)T

[#]

)
⋅ "

(54)
DAlog

Dℂ
=

1

||"||
(
D"

Dℂ

)T

["].
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since

Finally, we obtain

3  Constraint e!cacy comparison

A series of exemplary unit cell designs are presented in 
Fig.  5 to highlight the capabilities and limitations of the 
proposed optimization constraints. Each image displays the 
solid phase volume fractions of the example unit cell, using 
the threshold ! = 0.5 for visualization purposes. Addition-
ally, an octant has been clipped from each unit cell to illus-
trate internal features. Table 1 denotes each scalar metric 
defined in Sect. 2 evaluated on a mesh of 603 uniform hexa-
hedral elements. The isotropic base material has a Young’s 
modulus of E = 1 and a Poisson’s ratio of ! = 0.3 . The ersatz 
void material uses ! = 10−8 . All PDE’s were solved using 
the open-source, modular finite element method (MFEM) 
(Anderson et al. 2021) library developed by Lawrence Liv-
ermore National Laboratory.

(55)

(
D!

Dℂ

)T

[!] =

(
ℙ
isoD log(ℂ)

Dℂ
−

D log(ℂ)

Dℂ

)T

[!]

= −

(
D log(ℂ)

Dℂ

)T

[!]

(56)

(
ℙ
iso
)T
["] =

(
ℙ
iso
)T[

ℙ
iso log(ℂ) − log(ℂ)

]

= ℙ
iso log(ℂ) − ℙ

iso log(ℂ)

= 0.

(57)
DAlog

Dℂ
=

−1

||"||
(
D log(ℂ)

Dℂ

)T

["].

We begin the discussion by considering the uniform, solid 
microstructure ( ! = 1 ), referred to as unit cell #0. The 
evaluations of !vt , !eig , and !swc serve as our baseline values, 
i.e., "̄vt , "̄eig , and "̄swc , respectively. The homogenized ! and 
! are verified by comparing them to the analytical expres-
sions ! = E

3(1−2")
 and ! = E

2(1+")
 . Finally, we notice that all 3 

anisotropy measures are 0 (within numerical precision), 
which is expected since our unit cell material is isotropic.

Next, we consider a microstructure consisting of orthog-
onal beams aligned with the Cartesian axes, denoted as 
unit cell #1. This unit cell is presented as an example of 
an acceptable design; it is self-supporting, exhibits rea-
sonable stiffness in all directions, and does not have EVS 
or ISM. Moving left to right across Table 1 we see that 
!vtv = 1.03 !̄vt , while !vts = 1.77!̄vt . Both of these values 
would be acceptable if !vt was selected in the range of 4–10 
as recommended (Liu et al. 2015). Thus, the VTM con-
straints would correctly indicate that neither ISM nor EVS 
exist in the microstructure. We notice that !eig ≈ 10−1!̄eig and 
as expected we see a smaller self-weight compliance than 
our baseline structure. The homogenized ! and ! are, again 
as expected, also lower than the baseline microstructure, 
but nonetheless we have non-zero bulk and shear stiffness. 
The anisotropy measures all predict a moderate amount of 
anisotropy, which is also expected for this orthotropic unit 
cell. In summary, all of the constraints behave as we desire.

If we consider the effect of moving the vertical rods from 
unit cell #1 so they do not intersect with the horizontal 
sets of rods, we arrive at unit cell #2. Table 1 reveals that 
!vtv = 1.03 !̄vt , correctly communicating a lack of EVS. It 
would be fair at this point to suspect that !vts could rise dra-
matically since the vertical rods are not in contact with the 
horizontal rods. However, we see that !vts = 2.23 !̄vt . This 
can be understood by recognizing that the rods are infinitely 

Fig. 5  Exemplary unit cells for 
constraint evaluation compari-
son

Table 1  Constraint function 
values Unit cell !vtv !vts !eig !swc ! ! AU AL AD

# 0 0.0e+00 3.1e−01 1.4e+01 9.2e−01 8.3e−01 3.9e−01 7.8e−16 5.1e−16 9.6e−16
# 1 3.2e−01 5.5e−01 1.4e+00 4.9e−01 1.3e−02 7.1e−04 2.5e+01 4.0e+00 3.4e+00
# 2 3.2e−01 6.9e−01 8.1e−07 1.3e+05 1.1e−02 7.4e−09 2.7e+06 3.0e+01 1.6e+01
# 3 3.2e−01 5.9e−01 1.1e+00 7.3e+04 1.5e−08 6.8e−09 2.9e+06 3.2e+01 1.7e+01
# 4 3.2e−01 3.2e+05 2.2e−06 5.7e+03 1.3e−02 7.1e−04 2.5e+01 4.0e+00 3.4e+00
# 5 3.4e+05 3.1e−01 1.4e+01 9.2e−01 8.2e−01 3.8e−01 2.0e−08 8.8e−09 1.4e−04
# 6 6.9e−01 3.1e−01 1.2e+01 9.2e−01 7.6e−01 3.6e−01 2.6e−03 1.1e−03 5.0e−02
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long, under the infinite periodicity assumption. Thus, we 
have our first constraint limitation; the VTM identifies only 
those ISM enclosed by the unit cell, i.e., it does not ensure 
self-supporting structures. Fortunately, we have constraints 
that can identify these circumstances. Namely, the two func-
tions !eig ≈ 10−7!̄eig and !swc ≈ 105!̄swc both identify that 
unit cell # 2 is not self-supporting. Interestingly, we see that 
! from unit cell #2 is similar to that of unit cell #1 demon-
strating that disconnected rods do not adversely affect the 
ability to support a pressure load. However, ! ≈ 10−8!̄ dem-
onstrating almost no resistance to a shear load. As expected, 
all anisotropy indices show stark increases, but AL and AD 
show much smaller increases than AU due to their dependen-
cies on the logarithm.

Unit cell #3 is similar to #1 and #2; however, the ver-
tical rods have been removed. This example was con-
trived to illustrate a potential pitfall of !eig . We notice that 
!eig ≈ 10−1!̄eig even though it is clear that the structure is 
disconnected. This behavior is due to the fact that all of 
the solid phase material in the unit cell is connected, thus 
we have only 3 zero-valued eigenvalues. This non self-
supporting structure is identified, however, by noting that 
!swc ≈ 105!̄swc . Alternatively, it is identified by noting that 
! ≈ 0 and ! ≈ 0 , while the isotropy indices increase sig-
nificantly. As seen here, a constraint on bulk stiffness, shear 
stiffness, or anisotropy could be used in conjunction with !eig 
to ensure a self-supporting structure.

The strengths of our ISM constraints are demonstrated 
with unit cell #4. The small sphere of floating material 
is easily identified as !vts ≈ 106!̄vt , !eig ≈ 10−7!̄eig , and 
!swc ≈ 103!̄swc . Each of these metrics provides a clear signal 
that an ISM exists. As expected, ! , ! , and all of the anisot-
ropy indices return the same values as their corresponding 
evaluations on unit cell #1, since the floating sphere has no 
effect on the homogenized constitutive tensor.

Finally, the effectiveness of !vtv is demonstrated with unit 
cells #5 and #6. The void space in unit cell #6 is accepta-
ble since support material or pre-sintered powder could be 
removed, whereas the void space in unit cell #5 is unac-
ceptable. The VTM is able to distinguish these cases as 
!vtv ≈ 106!̄vt for unit cell #5 whereas !vtv = 2.23!̄vt for unit 
cell #6.

The results presented in Table 1 elucidate the capabilities 
and limitations of our constraints for producing manufactur-
able designs. For example, if the manufacturing process cannot 
handle EVS, then a !vtv constraint should be enforced. The 
simplest technique to ensure self-supporting structures is to 
enforce the !swc constraint. The downside, however, is that the 
stiffness cannot be explicitly tuned via !swc . If the designer 
seeks to tune the level of bulk or shear stiffness, then ! or ! 
constraints, respectively, are required. In many cases, these 
stiffness constraints are sufficient to remove unsupported mate-
rial since ISM do not add stiffness to the structure; however, 

ISM are not explicitly forbidden. Because of this the ! or ! 
constraints should be augmented with either a !vts , !eig , or !swc 
constraint. Finally, if isotropy is required for a particular appli-
cation, then any of the proposed anisotropy constraints should 
be enforced.

The choice of which combination of constraints to enforce 
may also be dictated by computational expense. The VTM and 
self-weight compliance problems require an array of 2d unit 
cells, although the VTM partial differential equation (PDE) 
is a scalar problem whereas the self-weight compliance PDE 
is a vector problem. If the unit cell exhibits orthorhombic 
symmetry, the self-weight compliance computations can be 
performed over a single unit cell whereas the VTM always 
requires an array of 2d unit cells. The mechanical eigenvalue 
problem in general requires a single unit cell domain, but the 
mesh can be reduced to an octant for cells with orthorhombic 
symmetry (Barbarosie et al. 2017). Also, ! , ! , and the ani-
sotropy measures are derived from the same homogenized 
stiffness tensor, thus only one homogenization computation 
is required over a single unit cell, or over an octant when 
unit cells exhibit orthorhombic symmetry (Barbarosie et al. 
2017). To conclude, a designer should select a combination of 
constraints that ensures their designs are viable with respect 
to manufacturing, stiffness, and anisotropy requirements. 
Then, the computational cost should be considered based on 
the symmetry of the unit cell. The computational cost of the 
constraints may be somewhat mitigated if the PDE solutions, 
e.g., the eigenvalues or the homogenized stiffness tensor, are 
required for other aspects of the TO framework since the 
scalar quantities are much cheaper to compute than the PDE 
solutions.

4  Optimization test problem

We now demonstrate the effectiveness of the proposed con-
straints and point out their capabilities and limitations on 
a simple topology optimization problem. Consider a cubic 
unit cell of side length a centered at the origin with imposed 
orthorhombic symmetry, uniformly discretized by 603 vox-
els. The 303 voxel volume fractions in the octant symme-
try cell serve as the design parameters. The length scale 
is controlled by applying a symmetric, periodic cone filter 
with a filter radius of 0.05a, cf. (Swartz et al. 2021). In all 
cases, the initial design is uniform with ! = 0.5 . A SIMP 
exponent of q = 3 and a modified SIMP exponent of r = 6 
are used for the VTM, eigenvalue, and self-weight compli-
ance constraints. A SIMP exponent of q = 4 is used for the 
homogenized-based constraints, i.e., bulk modulus, shear 
modulus, and isotropy constraints. The modified SIMP vol-
ume fraction boundaries are !L = 0.2 and !U = 0.8 , and the 
ersatz void phase uses ! = 10−8 . All optimization problems 



Manufacturing and stiffness constraints for topology optimized periodic structures  

1 3

Page 11 of 20   129 

were solved with the open-source, interior point optimizer 
(IPOPT) (Wächter and Biegler 2006).

4.1  Virtual temperature method for EVS 
identification

Consider the optimization problem

where ri is the distance from the voxel i centroid to the ori-
gin. The solution is a solid unit cell with a hollow sphere 
removed from the center, cf. Fig. 6. The resulting structure is 
problematic due to the region of EVS. To address this issue, 
we again solve Eq. (58) with the Eq. (7) constraint using the 
material interpolations from Eqs. (2) and (3). A series of 
optimal designs for various values of !vtv are presented in 
Fig. 7. We see that for !vtv = 25.0 , a channel of void space 
is formed effectively eliminating the EVS. For !vtv = 12.0 , 
a channel with two forks appears, and finally for !vtv = 6.0 , 
channels are created in all 3 dimensions. Thus, any of the 
selected values of !vtv eliminate the EVS. A trade-off exists 
between “how enclosed” the sphere is and the optimal value 
of the objective function, thus proper selection of !vtv will 
certainly be problem specific.

(58)
min
!

!EVS =

Nvoxel∑
i=1

{
1 − "i ri ≥ r0
"i ri < r0

subject to 0 ≤ "i ≤ 1,

4.2  Virtual temperature method for ISM 
identification

Now we consider the optimization problem

The result is a unit cell consisting of a floating sphere at the 
origin, cf. Fig. 8.1 The resulting structure is problematic due 
to the ISM. To address this issue we again solve Eq. (59) 
with the Eq. (7) constraint using the material interpola-
tions from Eqs. (8) and (9). A series of optimal designs for 
various values of !vts are presented in Fig. 9. We see very 
similar results to those in Sect. 4.1. For !vts = 25.0 , a beam 
of solid material is formed effectively eliminating the ISM. 
For !vts = 12.0 , a beam with two forks appears, and finally 
for !vts = 6.0 , beams are created in all 3 dimensions. Thus, 
any of the selected values of !vts eliminate ISM and adjust-
ing the value of !vts is the choice of the designer. A notable 
downside to this constraint is that we cannot guarantee the 
periodic structure is self-supporting, as evidenced by the 
!vts = 25.0 and 12.0 designs, which do not have stiffness in 
all directions.

(59)
min
!

!ISM =

Nvoxel∑
i=1

{
1 − "i ri ≤ r0
"i ri > r0

subject to 0 ≤ "i ≤ 1.

Fig. 6  Optimal ! solutions for !EVS

Fig. 7  Optimal ! solutions for 
!EVS with !vtv constraint

Fig. 8  Optimal ! solutions for !ISM

1 In Sects. 4.2–4.5 only volume fractions satisfying ! > 0.5 are plot-
ted for visualization.
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4.3  Eigenvalue constraint for ISM identification

To demonstrate the eigenvalue constraint we solve the 
optimization problem in Eq. (59) subject to the Eq. (27) 
constraint. Optimal structures are presented in Fig. 10 for 
various values of !eig . For !eig = 0.03 , the ISM is effectively 
removed by adding thin rod-like features, which become 
slightly larger for !eig = 0.10 . However, neither of these 
designs are self-supporting. If we use !eig = 0.15 , we remove 
the ISM and obtain a self-supporting structure. In summary, 
we observe similar behavior between the mechanical eigen-
value constraint and the ISM constraint in Sect. 4.2. For cer-
tain values of !eig we can remove the ISM without generat-
ing self-supporting structures. The appropriate value of !eig 
is again problem dependent. We also note that the optimal 
designs for !eig = 0.10 and 0.15 exhibit EVS. In fact, none of 

our ISM constraints prohibit EVS, which motivates our use 
of both ISM and EVS constraints to produce manufacturable 
designs in Sect. 5.4.

4.4  Self-weight compliance constraint for ISM 
identification

We demonstrate the self-weight compliance constraint by 
solving the optimization problem in Eq. (59) subject to the 
Eq.  (35) constraint. Optimal structures are presented in 
Fig. 11 for various values of !swc . We immediately notice 
that this constraint yields similar results for the three pre-
sented values of !swc . A slight difference appears in the 
thickness of the supporting beams, but the topology is iden-
tical in all cases. Most importantly, all three designs are fully 

Fig. 9  Optimal! solutions for 
!ISM with !vts constraint

Fig. 10  Optimal ! solutions for 
!ISM with !eig constraint

Fig. 11  Optimal ! solutions for 
!ISM with !swc constraint
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self-supporting. Thus, we expect that the appropriate !swc 
value is less problem dependent. The downsides of this con-
straint are its computational expense and its inability to tune 
stiffness. The latter concern is addressed in the next section.

4.5  Effective property constraints

If a design requires a particular level of stiffness or isotropy, 
effective property constraints derived from a homogeniza-
tion analysis may be employed. We investigate a few pos-
sibilities here. First, we solve the Eq. (59) optimization prob-
lem subject to the Eq. (43) constraint. Optimal structures for 
various values of !" are presented in Fig. 12. As expected, 
the features become larger as !" is increased, and in all cases 
we have stiffness in all directions. The optimal structures are 
fairly intuitive considering the bulk modulus measures the 
resistance to pressure loads.

Similarly, we solved the Eq. (59) optimization problem 
subject to the Eq. (47) constraint. Again, the features become 

larger as !" is increased, and in all cases we have stiffness in 
all directions. The structures in Fig. 13 exhibit more geomet-
ric complexity than the structures in Fig. 12, which is appar-
ently advantageous for resisting deflection under shear loads.

We have guaranteed through our definitions of ! and ! that 
enforcement of Eqs. (43) or (47) constraints yields structures 
with stiffness in all directions. However, no consideration is 
made with respect to isotropy. If isotropy is desired we, e.g., 
augment the bulk modulus constraint with a constraint on AU , 
AL , or AD , cf. Figs. 14, 15, and 16. We obtain very similar 
structures when constraining AU and AL , which is not surpris-
ing since they are both derived from Voigt and Reuss stiffness 
estimates. It is expected that these three constraints yield simi-
lar results since they are measuring the same type of behav-
ior. Thus, we do not give preference to any of the anisotropy 
measures, although ease of implementation may favor the use 
of AU or AL over AD.

Fig. 12  Optimal ! solutions for 
!ISM with !" constraint

Fig. 13  Optimal ! solutions for 
!ISM with !" constraint

Fig. 14  Optimal ! solutions for 
!ISM with !" ( !"=0.01) and AU 
constraints
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5  Photonic crystal design 
with manufacturing constraints

The constraints formulated in Sect. 2 are used to design 
photonic crystals for complete bandgaps. A topology 
optimization framework for photonic crystal design was 
recently presented (Swartz et al. 2021), which allows the 
bandgap optimizations to be performed using a traditional 

gradient-based NLP solver. This capability is augmented 
here by imposing design constraints to resolve deficiencies 
in our previous photonic crystal designs that were not manu-
facturable or self-supporting (Swartz et al. 2021). Note that 
throughout Sect. 5 the volume fractions have been thresh-
olded such that ! ≥ 0.5 is considered solid material, whereas 
! < 0.5 is considered void space in the dispersion analyses. 
Please see the original manuscript (Swartz et al. 2021) for 

Fig. 15  Optimal ! solutions for 
!ISM with !" ( !"=0.01) and AL 
constraints

Fig. 16  Optimal ! solutions for 
!ISM with !" ( !"=0.01) and AD 
constraints

Fig. 17  Applying !vtv constraint 
to remove EVS from mode 5-6 
bandgap structure
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a comprehensive description of the problem formulation, 
photonic bandgap definition, and other relevant details.

5.1  Removal of EVS

Two recently published designs (Swartz et al. 2021) for pho-
tonic crystals with complete 3D bandgaps displayed EVS, 
which we now remove via the VTM constraint. Figure 17a 
displays the published optimal bandgap structure (Swartz et al. 
2021); the left-most image displays the solid material, while 
the middle image displays the complement, i.e., the void space. 
We immediately notice a disconnected void space region caus-
ing EVS. The dispersion plot reveals a 17.40% bandgap–mid-
gap ratio. We solve the optimization problem enforcing the 
Eq. (7) constraint with !vtv = 6.0 to obtain the design depicted 
in Fig. 17b. The constrained design is similar to the uncon-
strained design; however, small channels have formed causing 
the void space to be simply connected. Thus, support material 
or pre-sintered powder could be removed from the design (Liu 
et al. 2015). There is a slight reduction in the bandgap–mid-
gap ratio, i.e., 16.18% vs. 17.40% , but this difference is small 
considering that the previous design was not manufacturable.

Another problematic 3D bandgap design from Swartz et al. 
(2021) is pictured in Fig. 18. The design exhibited a band-
gap–midgap ratio of 12.73% ; however, a region of EVS is pre-
sent. Enforcing the Eq. (7) constraint with !vtv = 4.0 produces 
the design depicted in Fig. 18b. Again, we see the formation of 
small channels causing the void space to be simply connected. 
The bandgap–midgap ratio of this design is reduced to 12.07% , 
but we again have produced a manufacturable structure.

5.2  Removal of ISM

The bandgap structure depicted in Fig. 19a from Swartz 
et al. (2021), exhibits ISM. The optimization problem is re-
solved with a variety of constraints to prevent ISM. First, the 
VTM Eq. (7) constraint is enforced. The resulting structure 
depicted in Fig. 19b has a slightly smaller bandgap; how-
ever, something interesting has occurred. The topology of 
the structure has changed such that both the ISM and EVS 
present in the original design are removed. Interestingly, 
the designs illustrated in Figs. 19c and 19d, obtained via 
enforcement of the self-weight compliance and shear modu-
lus constraints, respectively, outperform the unconstrained 
design. It appears that the constrained optimizations found 
a better local minima than the unconstrained. This behavior 
should not be expected in general, but it is an important 
finding nonetheless. The downside to the designs pictured 
in Figs. 19c and d is that EVS remains, which is not surpris-
ing since EVS is not strictly forbidden in the optimization 
formulations. This point is further addressed in Sect. 5.4.

5.3  Requirement of self-supporting structure

A recently published structure with a complete 2D bandgap 
(Swartz et al. 2021) is not self-supporting. Specifically, the 
design, pictured in Fig. 20a, is not self-supporting as it con-
sists of two separate solid regions. To alleviate this issue 
we first re-solved the problem while enforcing the Eq. (27) 
mechanical eigenvalue constraint. The optimized design 
shown in Fig. 20b is similar to the unconstrained version, 

Fig. 18  Applying !vtv constraint 
to remove EVS from mode 6–7 
bandgap structure
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but additional features have been added so that the structure 
is fully self-supporting. The bandgap performance deceases 
slightly, but the design is now manufacturable. We next 
enforced the Eq. (35) self-weight compliance constraint. The 
optimal structure seen in Fig. 20c is quite different from the 
unconstrained design, and the bandgap performance is sig-
nificantly reduced. All is not lost, however, as the structure 
is fully self-supporting and still exhibits a complete bandgap. 

Finally, we enforced the Eq. (47) shear modulus constraint. 
The resulting optimal structure appearing in Fig. 20d is simi-
lar to the Fig. 20b design in that additional features have 
been added; however, the performance is better. We want 
to emphasize that these results are just examples proving 
the effectiveness of the constraints and that more exhaustive 
studies may lead to different conclusions about which of 
the presented constraints produce better performing designs.

Fig. 19  Applying various constraints to remove ISM

Fig. 20  Applying various constraints to ensure structures are self-supporting
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5.4  Manufacturable photonic crystals

In order to manufacture our photonic crystals they must nei-
ther exhibit EVS nor ISM, i.e., it is not enough to consider 
them separately. To this end, we reconsidered the design 
problems addressed in Sects. 5.2 and 5.3. We began by opti-
mizing the 2D bandgap–midgap ratio between modes 6 and 

7 with a bulk modulus constraint to ensure stiffness and a 
VTM constraint to remove EVS. The resulting constrained 
structure is compared to the original unconstrained structure 
in Fig. 21. Notice that both the ISM and EVS have been 
removed from the design, while simultaneously improving 
the bandgap performance.

Fig. 21  Applying ! and VTM 
constraints to ensure structures 
are manufacturable

Fig. 22  Applying ! and VTM 
constraints to ensure structures 
are manufacturable
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Similarly, we optimized the 2D bandgap–midgap ratio 
between modes 8 and 9 with a shear modulus constraint 
to ensure stiffness and a VTM constraint to remove EVS. 
The resulting design, pictured in Fig. 22, is quite different 
from its unconstrained counterpart illustrated in Fig. 22a. 
Both ISM and EVS have been eliminated in the constrained 
design which is also self-supporting. Again we emphasize 
that although the bandgap–midgap ratio is reduced from 
20.28 to 19.28% , the new design is manufacturable.

6  Photonic bandgap design with tunable 
bulk modulus

If a designer seeks a photonic crystal with a desired stiffness, 
the bulk modulus and shear modulus constraints should be 
considered. To demonstrate this capability, a series of band-
gap optimizations are performed with various minimum bulk 
modulus constraints. At each constraint value, 20 random 
initial designs were used from which the best resulting opti-
mized design is selected.

Figure 23 plots the optimal bandgap–midgap ratio for 
a complete 2D bandgap between modes 5 and 6 against 
the minimum bulk modulus. The best of the 20 optimized 
designs is pictured near its corresponding data point; the 
shaded region under the curve indicates the feasible design 
space. We see a roughly inverse linear relationship between 
our two quantities of interest and note that ! ≈ 0.2 is the 
largest bulk stiffness we can generate with a complete 
bandgap. This plot allows designers to visualize the trade-
off between bandgap and bulk stiffness performance. It is 
interesting to note that enforcing a minimum bulk modulus 
of ! ≥ 0.025 actually produced a better performing bandgap 
structure than optimizing for bandgap without considering 
! ; evidenced by the non-monotonicity of the plot in Fig. 23. 
Since there are many local minima in the designs space 
we cannot hope to capture the global minimum with only 

20 initial designs and thus we should interpret the shaded 
region as an approximation of the feasible design space.

We repeat the Fig. 23 study, but now design for com-
plete 3D bandgaps between modes 5 and 6. The results, 
pictured in Fig. 24, present a roughly inverse linear rela-
tionship between the two quantities of interest and suggest 
that ! ≈ 0.12 is the largest bulk stiffness we can generate 
with a complete bandgap. As expected, the volume fraction 
increases with ! in Fig. 24, but the topology does not change 
in contrast to the Fig. 23 designs.

7  Conclusions

Topology optimization of phononic/photonic crystals often 
generates structures that are not manufacturable due to EVS 
and ISM. Additionally, they often exhibit poor stiffness. We 
have suggested a series of simple constraints which can be 
used to enforce fully-connected, manufacturable structures 
with stiffness.

The virtual temperature method is used to prevent EVS and 
extended to prevent ISM. Further, we adapted the VTM to peri-
odic structures such that constraint behavior is invariant with 
respect to unit cell selection. A mechanical eigenvalue constraint 
has been proposed to ensure fully-connected structures while 
the proposed self-weight compliance constraint ensures self-
supporting structures. We also studied the effect of homogeni-
zation-based constraints on the bulk and shear moduli to ensure 
desired stiffness and remove ISM, although the latter claim is 
not guaranteed. Finally, the efficacy of three proposed isotropy 
constraints have been demonstrated.

The performance of each constraints was demonstrated on 
contrived test cases and on the design of photonic bandgap 
structures. We generated 3D structures with complete 2D 
and 3D photonic bandgaps that were self-supporting and had 
required levels of stiffness. The trade-off between photonic 
bandgap and bulk modulus was investigated to generate an 
approximation of the feasible design space.

Fig. 23  2D Bandgap–midgap ratio !" vs. bulk modulus ! Fig. 24  3D Bandgap–midgap ratio !" vs. bulk modulus !
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It is imperative to use the VTM to prevent EVS if the AM 
process used to manufacture the designs will require support 
material or powder. We suggest employing a bulk and/or mod-
ulus constraint to ensure a desired degree of stiffness. Aug-
menting a stiffness constrained formulation with a mechanical 
eigenvalue constraint or the VTM will eliminate ISM. Alter-
natively, a self-weight compliance constraint is sufficient if a 
fully-connected structure is the only design requirement beyond 
the desired objective. The proposed bulk and shear stiffness 
constraints require at least some stiffness in all directions. Thus, 
the isotropic constraints may not be necessary unless, of course, 
some degree of isotropy is specifically required. There was no 
discernible difference between the three studied isotropy con-
straints, although the ease of differentiating and implementing 
the universal or log-universal isotropy constraints give them a 
slight advantage over the log-distance constraint.

Future studies should implement these constraints to 
satisfy the requirements of particular manufacturing pro-
cesses. This will further elucidate appropriate ! values for 
the constraint functions and further test the design frame-
work. Additionally, these constraints should be applied to 
prevent ISM in other applications, such as acoustic filters.
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