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Abstract

We present a novel finite element analysis of inelastic structures containing Shape Memory Alloys (SMAs). Phenomenolog-
cal constitutive models for SMAs lead to material nonlinearities, that require substantial computational effort to resolve. Finite
lement analysis methods, which rely on Gauss quadrature integration schemes, must solve two sets of coupled differential
quations: one at the global level and the other at the local, i.e. Gauss point level. In contrast to the conventional return
apping algorithm, which solves these two sets of coupled differential equations separately using a nested Newton procedure,
e propose a scheme to solve the local and global differential equations simultaneously. In the process we also derive closed-

orm expressions used to update the internal/constitutive state variables, and unify the popular closest-point and cutting plane
ethods with our formulas. Numerical testing indicates that our method allows for larger thermomechanical loading steps and

rovides increased computational efficiency, over the standard return mapping algorithm.
2021 Elsevier B.V. All rights reserved.
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1. Introduction

In the past three decades, shape memory alloys (SMAs) have become one of the most widely used active
aterials. The actuating features of SMAs come from the Two-Way Shape Memory Effect (TWSME) and

seudoelasticity (superelasticity). These terms refer to recoverable deformations over temperature and mechanical
oading cycles, respectively. These properties, as well as the characteristics of high energy density, medium-to-high
ctuating frequency, and favorable mechanical properties (strength, stiffness, etc.), have made SMAs a frequent
hoice in a variety of applications [1].

Given these advantages, computational modeling of SMAs is an important topic of investigation. Specifically,
onstitutive modeling and finite element analysis of polycrystalline SMAs are of critical importance, since many
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polycrystalline SMAs tend to exhibit stable TWSMEs and superelasticity [2]. However, the complex constitutive
relationship of these multifunctional materials substantially increases the difficulty of the modeling task. Various
thermomechanical constitutive models for SMAs have been developed and these models are generally be categorized
into two groups—micromechanical models and phenomenological models. Micromechanical models focus more
on describing the microscopic behaviors of different SMA crystal variants and lattice structures within the SMA
family, whereas phenomenological models concentrate on their macroscopic constitutive behaviors. Sun and Hwang
produced pioneering work on constitutive relationships based on micromechanical models [3,4]. Further study
on the micromechanical dynamics of phase boundary motion was then conducted by Bhattacharya [5,6]. In the
past decade, researchers in this area have further investigated the lattice structure of SMAs, and have sought
to develop models that accurately capture the phenomena of twining, detwining, and single crystallization [7,8].
Micromechanics models are computationally intense, and produce a level of details that may not be necessary for
all applications. This gives rise to phenomenological models, whose main challenge is to accurately model hardening
during phase transformation. The exponential hardening rule is the first proposed model for NiTi SMAs [9], followed
by the cosine model [10,11], the quadratic function model [12–14] and the smooth transformation model [15].
These phenomenological models formed the basis of improved constitutive models considering plasticity [16,17],
creep [18–20], tension–compression asymmetry [21,22] and large deformation [23]. Efforts in this area are also
directed toward introducing different representations for thermodynamic potentials, which contain internal state
variables that represent the transformation state of SMAs. As a result of these phenomenological models, finite
element analysis of SMAs has become more computationally efficient and accurate, with fewer tuned parameters.
Indeed, experimental validation of Helmholtz free and Gibbs free potential energies, and phase diagrams have been
reported [24–28].

The highly nonlinear finite element analysis requires iterative techniques to evaluate the dynamic thermal energy
tate of the material [29] at each time step within the simulation. Two sets of coupled differential equations (DEs)
eed to be solved concurrently. One set contains the global partial differential equations (PDEs) based on the
omentum balance, and the other set contains the local ordinary differential equations (ODEs), which are based

n the evolution relation [30]. Extensive applied mathematics research has been focused on efficiently solving
hese large coupled systems of DEs. The return mapping algorithm is the most widely adopted approach [31].
n each iteration of this nested approach, one first updates the internal/constitutive state variables for the given
tate of strain by fully solving local constitutive DEs at each Gauss point. Then the displacement is updated by
olving the linear system derived from the global equilibrium PDEs. This procedure treats the global–local DEs
s two coupled convex mathematical programming problems, adding an extra layer of computational complexity
nd inefficiency. In an effort to improve the efficiency of the classical return mapping method at each iteration,
imo et al. solved the Gauss point DE and global PDE updates as one monolithic system thereby they did not
ave to fully solve local DEs [32]. Kulkarni et al. then used a Schur-complement procedure to solve the monolithic
ystem [33]. Similar Newton Schur procedures are also reported to solve other problems with history dependent
aterial responses [34–39].
While similar procedures have been implemented for elastoplastic systems, researchers have yet to apply the

ewton Schur tool to SMAs due to the complicated schemes required for updating the internal, i.e. constitutive,
tate variables. To this end, we develop what we deem the parallel projection algorithm. The algorithm provides

identical results as the classical return mapping algorithm, with measurable benefits, notably the ability to take of
larger load steps and achieve computational savings. Further, we propose schemes for updating the internal state
variables that unify the popular closest-point and cutting plane methods. In the sections that follow, we explain the
implementation and mathematical rationale behind the parallel projection algorithm, and demonstrate the algorithm
via a series of example problems over one- and three-dimensional domains.

2. Phenomenological constitutive relationship of SMAs

The unique properties (TWSME and superelasticity) of SMAs are triggered by a non-diffusional phase trans-
formation, which is caused by latent heat exchange between two stable phases. These two phases, martensite (M)
and austenite (A), are each characterized by their distinctive molecular lattice structures. In this paper, we use the
phenomenological constitutive models derived by Boyd and Lagoudas [12] and later described by Lagoudas in
2008 [14]. This model uses the Gibbs-free energy,

G = u −
1

σ : ε − sT (1)

ρ

2
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to derive the constitutive relationship. Here, ε is the total small strain tensor, σ is the Cauchy stress tensor, T is the
emperature, ρ is the density, u is the specific internal energy and s is the specific entropy which define the energy
tate of the thermodynamic system. The operator “:” refers to double dot product of tensors. The choice of Gibbs
ree energy makes it easier to represent the constitutive model in the global momentum balance relationship used
n the finite element analysis. We assume that the energy function G depends on the martensite volume fraction ξ ,

the stress σ , the temperature T , and the transformation strain εt . It is further assumed to be expressed as the sum
f bulk Gb and mixing Gm energies such that

G = Gb + Gm (2)

here

Gb(ξ, σ , T ) = −
1

2ρ
σ : S : σ −

1
ρ

σ : α(T − T0) + c
[

(T − T0) − T ln
T
T0

]
− s0T + u0 (3)

nd

Gm(ξ, σ , T, εt ) = −
1
ρ

σ : εt
+

1
ρ

f (ξ ) (4)

n the above f is the experimentally obtained transformation hardening function that defines the specific energy
ue to mixing, T0 refers to reference temperature for thermal expansion, S is the compliance tensor and α is the

thermal expansion tensor. For isotropic SMAs, the Young’s modulus E is the only variant in the evolution of the
compliance tensor S. As such, we express S (in Voigt notation) via the compliance modulus S = 1/E and the
Poisson’s ratio υ as

S = SC

C =

⎡⎢⎢⎢⎢⎢⎢⎣
1 −υ −υ 0 0 0

−υ 1 −υ 0 0 0
−υ −υ 1 0 0 0
0 0 0 2(1 + υ) 0 0
0 0 0 0 2(1 + υ) 0
0 0 0 0 0 2(1 + υ)

⎤⎥⎥⎥⎥⎥⎥⎦
(5)

Consistent with our isotropic assumption, the thermal expansion tensor α is given by

α = α × diag
(

1, 1, 1, 0, 0, 0
)

(6)

here α is the thermal expansion coefficient.
The symbols c, s0 and u0 in Eq. (3) represent the effective specific heat, effective specific entropy and effective

pecific internal energy. The values of the above physical quantities are expressed as a volume average of their
alues in their martensite (M) and austenite (A) phases, i.e.

S = S A
+ ξ (SM

− S A) = S A
+ ξ∆S

α = αA
= αM

c = cA
= cM

s0 = s A
0 + ξ (s M

0 − s A
0 ) = s A

0 + ξ∆s0

u0 = u A
0 + ξ (uM

0 − u A
0 ) = u A

0 + ξ∆u0

(7)

ote that α and c are assumed to be constant
We derive the strain ε by substituting Eqs. (1) and (2) into the second law of thermodynamics.

1
ρ

σ : ε̇ − (u̇ + ṡT ) ≥ 0 (8)

Applying the Coleman–Noll approach [30], we find that the total strain is composed of three parts, i.e.

ε = εe
+ εth

+ εt (9)

In the above we have the usual elastic strain εe
= S : σ and pure thermal expansion strain εth

= α(T − T0), and
he transformation strain εt , which is defined via a phenomenological model. Now we invert the relation to obtain
3
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the familiar looking result

σ = S−1
: (ε − εth

− εt )

= S−1
: (ε − α(T − T0) − εt ) (10)

An evolution relation (flow rule) [40] is proposed to build a relationship between the transformation strain εt

nd the martensite volume fraction ξ . Thus we only have three internal variables ξ , σ and T to consider in the
henomenological model. The ξ − εt relation is governed by the experimentally obtained transformation tensor Λ;
e use the isotropic relationship proposed by Boyd and Lagoudas [12].

ε̇t
= Λξ̇

Λ =

⎧⎨⎩
3
2 H σ s

σ
e f f
s

ξ̇ > 0

H εt−r

ε
e f f
t−r

ξ̇ < 0
(11)

where H is the maximum transformation strain of the SMA material. In the forward transformation, i.e. austenite
(A) to martensite (M) transformation for which ξ̇ > 0, σ s is the deviatoric stress tensor and σ

e f f
s is its associated

ffective (von Mises) stress. In the reverse transformation, i.e. martensite (M) to austenite (A) transformation for
hich ξ̇ < 0, εt−r is the transformation strain tensor at the reversal point, and ε

e f f
t−r is its associated effective strain.

Using the aforementioned thermodynamic relationships, the second law of thermodynamics reduces to the
lausius–Planck inequality [41].

Π ξ̇ ≥ 0 (12)

here

Π (ξ, σ , T ) =σ : Λ +
1
2
σ : ∆S : σ + ρ∆s0T − ρ∆u0 −

∂ f (ξ )
∂ξ

(13)

nd we recall that the thermal expansion coefficient and specific heat do not change with the phase transformation.
Note that the Clausius–Planck inequality must be satisfied for all admissible thermomechanical loading paths ξ̇ .

n our study, the loading paths are constrained such that Φ ≤ 0, where Φ = |Π | − Y can be viewed as a type of
yield function in which Y is a type of yield strength (transformation threshold) determined by the transformation
hardening function. When Φ = 0, we have two possibilities. If Π −Y = 0 then to satisfy Eq. (12), ξ̇ > 0, indicating
the forward transformation; otherwise if −Π − Y = 0 then ξ̇ < 0, indicating the inverse transformation. For all
other cases, i.e. for Φ < 0, we have ξ̇ = 0.

Φ

⎧⎨⎩
= Π − Y = 0 ξ̇ > 0 (A → M)
= −Π − Y = 0 ξ̇ < 0 (M → A)
< 0 ξ̇ = 0

(14)

We assume the martensite volume fraction ξ evolves so as to maximize the dissipation of Eq. (13), subject to
the Φ ≤ 0 constraint. As such, we must satisfy the Kuhn–Tucker conditions

Φ ≤ 0, Φξ̇ = 0, ξ̇

⎧⎨⎩ ≥ 0 if Π − Y = 0 (A → M)
≤ 0 if − Π − Y = 0 (M → A)
= 0 if Φ < 0

(15)

Additionally, during either forward or reverse transformation, i.e. ξ̇ ̸= 0, we must satisfy the consistency
condition to stay on the “loading surface”, i.e. to maintain the Φ = 0 equality [42]

Φ̇ =
∂Φ

: σ̇ +
∂Φ

: Ṫ +
∂Φ

: ξ̇ = 0 (16)

∂σ ∂T ∂ξ

4
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To satisfy the Karush–Kuhn–Tucker (KKT) and the consistency conditions, the following inelastic constitutive
elationship must hold

dσ = L : dε + Θ : dT

L =

⎧⎨⎩ S−1
−

S−1
:∂σΦ⊗S−1

:∂σΦ

∂σΦ:S−1:∂σΦ−∂ξΦ
ξ̇ > 0

S−1
−

S−1
:∂σΦ⊗S−1

:∂σΦ

∂σΦ:S−1:∂σΦ+∂ξΦ
ξ̇ < 0

Θ =

⎧⎨⎩ −L : α − ∂TΦ
S−1

:∂σΦ

∂σΦ:S−1:∂σΦ−∂ξΦ
ξ̇ > 0

−L : α − ∂TΦ
S−1

:∂σΦ

∂σΦ:S−1:∂σΦ+∂ξΦ
ξ̇ < 0

(17)

here ⊗ refers to the tensor product operator, L and Θ are the continuum tangent stiffness and tangent thermal
oduli.

. Finite element analysis of SMAs

.1. The discrete model

We now describe the combined equilibrium and constitutive DE problem as finding the kinematically admissible
isplacement d, martensite volume fraction ξ , transformation strain εt and stress tensor σ such that

Global Level : force equilibrium
∫
Ω ε(δd)σ (d, ξ )dΩ −

∫
Γ P δd pdΓ p

= 0 ∀ δd
Local Level : KKT − condition Φ ≤ 0 in Ω

ξ̇Φ = 0 in Ω

Consistency Φ̇ =
∂Φ
∂σ

: σ̇ +
∂Φ
∂T : Ṫ +

∂Φ
∂ξ

: ξ̇ = 0 in Ω

flow rule ε̇t = Λξ̇ ,

(18)

where the boundary conditions include prescribed displacements dc over Γd , prescribed traction p over Γ P , and
prescribed temperature T over Ω . Note that the local-level problem is directly solved as an algebraic equation when
SMAs behave elastically, i.e. ξ̇ = 0. When SMAs behave inelastically, i.e. ξ̇ ̸= 0, the initial conditions for the local
DEs are the latest internal state variables solved before SMAs start transformation.

From Eq. (18), two sets of DEs are observed — one set of PDEs is applied at the global level, to enforce the
equilibrium equation. The other set of ODEs is applied at the local level to enforce the constitutive relationship.
Generally, for such complicated systems of differential equations, numerical methods must be used to approximate
the response. We discretize the system in the spatial domain via the finite element method and in the time domain via
a backward-Euler scheme. Here each pseudo-time step corresponds to a temperature increment or a load increment.
The discretized form of Eq. (18) is shown in Eq. (19).

Global Level : Rn+1 =
⋀

el[
∑

i (wBT(Gd
i )σ n+1) − ϖ N(Gp

i ) pn+1)] det J = 0

Local Level :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Hn+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
HΦ = Φ(σ n+1, Tn+1, ξn+1)
Hεt = εt

n + Λ(ξn+1 − ξn) − εt
n+1

HS = Sn + ∆S(ξn+1 − ξn) − Sn+1

Hσ = S−1
n+1 : [εn+1 − α(Tn+1 − T0) − εt

n+1] − σ n+1

⎫⎪⎪⎪⎬⎪⎪⎪⎭ = 0 ξ̇ ̸= 0

Hn+1 = S−1
: [εn+1 − α(Tn+1 − T0) − εt ] − σ n+1 = 0 ξ̇ = 0

(19)

ere, Gd
i (Gp

i ) are the 2D (1D) Gauss point coordinates for the area(line) integrals and w (ϖ ) are the corresponding
roduct of the differential area (length) and Gauss weights at the Gauss points, respectively. det J is the determinant
f the Jacobian matrix. N and B are shape functions used to interpolate the displacement and strain fields such
hat, e.g., in Voigt notation εn+1 = Bdn+1.1

There are two sets of unknown states in the problem, the global state variable u = (d f , Fc), and the local state
ariables ν = (ξ, εt , S, σ ) for the inelastic case, and ν = σ for the elastic case. Here, the superscript f refers to the
ree, i.e. unprescribed displacement degrees-of-freedom, d f ; and the superscript c represents the unknown reaction
orces Fc of the prescribed, i.e. constrained displacement degrees-of-freedom.

1 Note that HS is the rate form of Eq. (7) and could be simplified to HS = SA + ∆Sξn+1 − Sn+1. However, to maintain consistency
with [14] and consider experimental data may only provide the value of ∆S, we use the rate equation shown.
5
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3.2. The parallel projection algorithm

The aforementioned discrete model yields two sets of DEs that are defined in residual form; R = 0 is the
lobal equilibrium residual, and H = 0 is the local residual. The two sets of DEs are coupled through the Cauchy
tress tensor σ and displacement d. This results in a large system of nonlinear equations. For instance, for a two-
imensional (2D) domain with N nodes and G Gauss points, the FEM problem contains 2 × N global equations

and up to 6 × G local equations, all of which must be solved concurrently using the Newton–Raphson method.
To lessen the high computational cost, one’s first instinct might be to partition the system, and hence shrink

the size of the tangent matrix in the Newton–Raphson scheme. In the popular return-mapping algorithm [31], the
resulting system is uncoupled as

R(u, ν(u)) = 0
H(u, ν(u)) = 0

(20)

The uncoupled system is solved separately via a nested Newton–Raphson iteration consisting of two loops,

inner loop for ν(l+1)
:

⎧⎨⎩
[
∂ H
∂ν

(u(k), ν(l)(u(k)))
]

δν(l)
= −H(u(k), ν(l)(u(k)))

ν(l+1)
= ν(l)

+ δν(l), l = 1, 2, 3, ....
loop if |H | ̸≈ 0

(21)

outer loop for u(k+1)
:

⎧⎪⎨⎪⎩
[

∂ R
∂u

(u(k), ν(l+1)) −
∂ R
∂ν

(
∂ H
∂ν

)−1
∂ H
∂u

(u(k), ν(l+1))

]
δu(k)

= −R(u, ν(l+1))

u(k+1)
= u(k)

+ δu(k), k = 1, 2, 3, ....

where l and k are the iteration counters of the inner and outer Newton–Raphson loops. The derivative dν/du =

−(∂ H/∂ν)−1(∂ H/∂u) in the outer loop is obtained by differentiating the local residual in Eq. (20).
∂ H
∂u

(u, ν(u)) +
∂ H
∂ν

(u, ν(u))
dν

du
(u) = 0 (22)

As seen above, the local residual equation H = 0 in the inner loop is first solved for ν via Newton’s method for
he fixed u. After convergence of the inner problem, i.e. after |H| ≈ 0, we update the displacement u by solving
he linear system in the outer loop. We repeat the process, i.e. of solving the inner loop residual and updating
he displacement until |R| ≈ 0. Unfortunately, while the return mapping algorithm reduces the size of the tangent

atrix in the outer lop, it may require more iterations than simultaneously updating u and ν as one monolithic
ystem. We seek a method that combines the benefits of both approaches.

In response to the aforementioned concern, we introduce the parallel projection algorithm, which updates the
nner and outer equations in parallel. In this algorithm, we still partition the equation as shown in Eq. (20) to diminish
he size of the tangent matrix. However, we solve the coupled equations in a cross-iterative Newton–Raphson
cheme, which also contains inner and outer computations:

inner :

⎧⎨⎩
[
∂ H
∂ν

(u(k), ν(k)(u(k)))
]

δν(k)
= −H(u(k), ν(k)(u(k))) −

∂ H
∂u

(u(k), ν(k)(u(k)))δu(k−1)

ν(k+1)
= ν(k)

+ δν(k), k = 1, 2, 3, . . . .

outer :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[
∂ R
∂u

(u(k), ν(k+1)) −
∂ R
∂ν

(
∂ H
∂ν

)−1
∂ H
∂u

(u(k), ν(k+1))

]
δu(k)

= −R(u(k), ν(k)) +
∂ R
∂ν

(
∂ H
∂ν

)−1

H(u(k), ν(k))

u(k+1)
= u(k)

+ δu(k)

(23)

To begin the algorithm, i.e. for k = 1, we assign δu(0)
= 0. Notably, (1) we do not iterate to fully resolve the

inner equation for each update of the outer equation, (2) the inner and outer equations are updated sequentially
such that the outer problem is solved in parallel with the inner problem, (3) the coefficient matrices are identical in
the return-mapping and parallel projection algorithms. Fig. 1 highlights the difference between the return-mapping
and parallel projection algorithms.
6



Z. Kang, D.A. Tortorelli and K.A. James Computer Methods in Applied Mechanics and Engineering 389 (2022) 114364

w

T
w
(
t
b

Fig. 1. Comparison between the return mapping and parallel projection algorithms.

3.3. Internal state variables update

In this section, we provide the analytical solution of the updating scheme for the internal state variable ν. As
seen above in Eqs. (21) and (23), we need to calculate the inverse of the tangent matrix ∂ H/∂ν. Depending on the
thermomechanical state of the material, i.e. whether ξ̇ ≈ ξn+1 − ξn is zero or nonzero we have,

∂ Hn

∂νn
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣
∂ Hn

Φ
∂ξn

∂ Hn
Φ

∂εt
n

∂ Hn
Φ

∂Sn

∂ Hn
Φ

∂σ n
∂ Hn

εt
∂ξn

∂ Hn
εt

∂εt
n

∂ Hn
εt

∂Sn

∂ Hn
εt

∂σ n
∂ Hn

S
∂ξn

∂ Hn
S

∂εt
n

∂ Hn
S

∂Sn

∂ Hn
S

∂σ n
∂ Hn

σ
∂ξn

∂ Hn
σ

∂εt
n

∂ Hn
σ

∂Sn

∂ Hn
σ

∂σ n

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎣
∂ξΦn 01×6 0 ∂σΦ

T
n

Λn −I6×6 06×1 ∂σΛn : (ξn − ξn−1)
∆S 01×6 −I1×1 01×6

06×1 −S−1
n −S−1

n : I6×6 : σ n −I6×6

⎤⎥⎥⎦
ξ̇ ̸= 0[
∂ Hn
∂σ n

]
=

[
−I6×6

]
ξ̇ = 0

(24)

here the superscript T denotes the transpose of vectors and matrices.
From Eq. (24), we notice that the magnitudes S−1 and S−1 are much larger than the other internal variables.

his results in numerical difficulties, since ∂ H/∂ν is close to singular. To lessen the effect of the ill-conditioning,
e use Schur-complement to derive the analytical formula for the internal state variable update δν of Eqs. (21) and

23). Similar Schur procedures are also reported in [33,43–45] for plasticity and ductile fracture problems. To do
his, we break the update into two parts. First we compute ∆ν

(k)
n+1 = −(∂ H (k)

n+1/∂ν
(k)
n+1)−1 H (k)

n+1, which appears in
oth the return mapping and parallel projection algorithms.

∆ν
(k)
n+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δξ

(k)
n+1

δεt∗(k)
n+1

δS(k)
n+1
(k)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∆ξ ∗(k)

n+1 + ϑ
(k)
n+1

∆εt∗(k)
n+1 + Λ̃

(k)
n+1 : ϑ

(k)
n+1 + Ψ̃

(k)
n+1

∆S∗(k)
n+1 + HS

(k)
n+1 + ∆S · ϑ

(k)
n+1

∗(k) (k) (k) (k)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (25)
δσ n+1 ∆σ n+1 + Ln+1 : Sn+1 : Ψ n+1

7
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where

∆ξ ∗(k)
n+1 =

Φ(k)
n+1 − ∂σΦ

(k)
n+1 : ζ

(k)
n+1

−1
: Hεt

(k)
n+1

±∂σΦ
(k)
n+1 : ζ

(k)
n+1

−1
: ∂σΦ

(k)
n+1 − ∂ξΦ

(k)
n+1

(+ : ξ̇ > 0, − : ξ̇ < 0)

∆σ ∗(k)
n+1 = ζ

(k)
n+1

−1
: [−Hεt

(k)
n+1 ∓ ∆ξ ∗(k)

n+1 : ∂σΦ
(k)
n+1] (− : ξ̇ > 0, + : ξ̇ < 0)

∆εt∗(k)
n+1 = −S(k)

n+1 : ∆σ ∗(k)
n+1 − (∆S : I : σ

(k)
n+1)∆ξ ∗(k)

n+1 (26)

∆S∗(k)
n+1 = ∆S∆ξ ∗(k)

n+1

Ψ (k)
n+1 = Hσ

(k)
n+1 − S(k)

n+1
−1

: I : σ
(k)
n+1 : HS

(k)
n+1

Ψ̃
(k)
n+1 = S(k)

n+1 : ζ
(k)
n+1

−1
: ∂σΛ

(k)
n+1 : (ξ (k)

n+1 − ξn) : Ψ (k)
n+1

ϑ
(k)
n+1 =

∂σΦ
(k)
n+1

±∂σΦ
(k)
n+1 : ζ

(k)
n+1

−1
: ∂σΦ

(k)
n+1 − ∂ξΦ

(k)
n+1

: ζ
(k)
n+1

−1
: S(k)

n+1 : Ψ (k)
n+1 (+ : ξ̇ > 0, − : ξ̇ < 0)

ζ
(k)
n+1 =

{
S(k)

n+1 + ∂σΛ
(k)
n+1 : (ξ (k)

n+1 − ξn) ξ̇ > 0
S(k)

n+1 ξ̇ < 0

Next we evaluate ∆ν∗(k)
n+1 = −(∂ H (k)

n+1/∂ν
(k)
n+1)−1(∂ H (k)

n+1/∂u(k)
n+1)δu(k−1)

n+1 , which only appears in the parallel
rojection algorithm.

∆ν∗(k)
n+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂σΦ
(k)
n+1

T
:ζ

(k)
n+1

−1

±∂σΦ
(k)
n+1:ζ

(k)
n+1

−1
:∂σΦ

(k)
n+1−∂ξΦ

(k)
n+1

Λ̃
(k)
n+1:∂σΦ

(k)
n+1

T

±∂σΦ
(k)
n+1:ζ

(k)
n+1

−1
:∂σΦ

(k)
n+1−∂ξΦ

(k)
n+1

: ζ
(k)
n+1

−1
− S(k)

n+1 : ζ
(k)
n+1

−1
+ I6×6

∆S:∂σΦ
(k)
n+1

T

±∂σΦ
(k)
n+1:ζ

(k)
n+1

−1
:∂σΦ

(k)
n+1−∂ξΦ

(k)
n+1

: ζ
(k)
n+1

−1

L
(k−1)
n+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
B : δu(k−1)

n+1 (27)

here we use + if ξ̇ > 0 and − if ξ̇ < 0. For all updates, we define

Λ̃
(k)
n+1 = S(k)

n+1 : ζ
(k)
n+1

−1
: (Λ(k)

n+1 − ∂σΛ
(k)
n+1 : (ξ (k)

n+1 − ξn) : S(k)
n+1

−1
: I6×6 : σ

(k)
n+1 : ∆S) (28)

ote that during the inverse transformation, i.e. ξ̇ < 0, Λ̃
(k)
n+1 degenerates to the transformation tensor Λ(k)

n+1, since
(k)
n+1 = S(k)

n+1 and ∂σΛ
(k)
n+1 = 0. Ultimately, the local Newton–Raphson updated increment δν(k+1)

n shown in Eqs. (21)
nd (23) is evaluated as

δν
(k+1)
n+1 =

{
∆ν

(k)
n+1 (Return Mapping)

∆ν
(k)
n+1 + ∆ν∗(k)

n+1 (Parallel Projection)
(29)

detailed derivation of these quantities is provided in Appendix.
With these formulae, we obtain the consistent tangent stiffness modulus L

(k)
n+1 to update the displacement,

.e. (∂ R/∂u) − (∂ R/∂ν)(∂ H/∂ν)−1(∂ H/∂u) =
∑

Gi
wBTL

(k)
n+1 B det J , where

L
(k)
n+1 = ζ

(k)
n+1

−1
−

ζ
(k)
n+1

−1
: ∂σΦ

(k)
n+1 ⊗ ζ

(k)
n+1

−1
: ∂σΦ

(k)
n+1

∂σΦ
(k)
n+1 : ζ

(k)
n+1

−1
: ∂σΦn+1

(k)
∓ ∂ξΦ

(k)
n+1

(+ : ξ̇ > 0, − : ξ̇ < 0) (30)

nd ζ n is defined in Eq. (26). Note the similarity in the form of the “continuum” tangent operator of Eq. (17) and
he “consistent” tangent operator of (30).

Now, we compare our Newton–Raphson updating scheme for solving the local residual H to the radial
eturn method for plasticity [31], and with the popular closest-point [40] and cutting plane methods [14]. The
ewton–Raphson scheme can be simplified by strictly enforcing some of the local residual equations in H =

Hφ, Hεt , HS, Hσ ]T
= 0 to eliminate their associated internal variables ξ, εt , S, σ , cf. Table 1.

Summarizing all of the above methods, i.e. the Newton–Raphson, radial return, closest-point and cutting plane
ethods, are applicable to both the return mapping and parallel projection algorithms. The difference being that

ocal iterations are performed in the return mapping algorithm, but not in the parallel projection algorithm.
8



Z. Kang, D.A. Tortorelli and K.A. James Computer Methods in Applied Mechanics and Engineering 389 (2022) 114364

w
t

4

v
N
p
i
c
a

4

w
1
w

Table 1
Comparison of techniques to update internal state variables in ∆v.

Newton–Raphson Method Radial return Method

Strictly enforced: Hσ = 0 to eliminate σ

Increment :

δξ
(k)
n+1 = ∆ξ∗(k)

n+1 + ϑ
(k)
n+1

δεt (k)
n+1 = ∆εt∗(k)

n+1 + Λ̃
(k)
n+1 : ϑ

(k)
n+1 + Ψ̃

(k)
n+1

δS(k)
n+1 = ∆S∗(k)

n+1 + HS
(k)
n+1 + ∆S · ϑ

(k)
n+1

δσ
(k)
n+1 = ∆σ ∗(k)

n+1 + L
(k)
n+1 : S(k)

n+1 : Ψ
(k)
n+1

Consistent tangent operator :

Ln =

⎧⎨⎩ ζ−1
n −

ζ−1
n :∂σΦn⊗ζ−1

n :∂σΦn
∂σΦn :ζ−1 :∂σΦn−∂ξΦn

ξ̇ > 0

S−1
n −

S−1
n :∂σΦn⊗S−1

n :∂σΦn

∂σΦn :S−1
n :∂σΦn+∂ξΦn

ξ̇ < 0

Increment :

δξ
(k)
n+1 = ∆ξ∗(k)

n+1 + ϑ
(k)
n+1

δεt (k)
n+1 = ∆εt∗(k)

n+1 + Λ̃
(k)
n+1 : ϑ

(k)
n+1 + Ψ̃

(k)
n+1

δS(k)
n+1 = ∆S∗(k)

n+1 + HS
(k)
n+1 + ∆S · ϑ

(k)
n+1

ϑ
(k)
n+1 =

∂σΦ
(k)
n+1 :ζ

(k)
n+1

−1
:S(k)

n+1 :Ψ
(k)
n+1

±∂σΦ
(k)
n+1 :ζ

(k)
n+1

−1
:∂σΦ

(k)
n+1−∂ξΦ

(k)
n+1

Ψ
(k)
n+1 = −S(k)

n+1
−1

: σ
(k)
n+1 : HS

(k)
n+1

σ
(k+1)
n+1 = S(k+1)

n+1
−1

: [εn+1 − α(Tn+1 − T0)
−ε

t(k+1)
n+1 ]

Consistenttangentoperator :

Ln =

⎧⎨⎩ ζ−1
n −

ζ−1
n :∂σΦn⊗ζ−1

n :∂σΦn
∂σΦn :ζ−1 :∂σΦn−∂ξΦn

ξ̇ > 0

S−1
n −

S−1
n :∂σΦn⊗S−1

n :∂σΦn

∂σΦn :S−1
n :∂σΦn+∂ξΦn

ξ̇ < 0

Closest-Point Method [40] Cutting Plane Method [14]

Strictly enforced : HS = 0, Hσ = 0
to eliminate S and σ

Strictly enforced : HS = 0, Hεt = 0, Hσ = 0
to eliminate S, εt and σ

Increment :

δξ
(k)
n+1 = ∆ξ∗(k)

n+1
δεt (k)

n+1 = ∆εt∗(k)
n+1

δS(k)
n+1 = ∆S∆ξ∗(k)

n+1

σ
(k+1)
n+1 = S(k+1)

n+1
−1

: [εn+1 − α(Tn+1 − T0)
−ε

t(k+1)
n+1 ]

Consistent tangent operator :

Ln =

⎧⎨⎩ ζ−1
n −

ζ−1
n :∂σΦn⊗ζ−1

n :∂σΦn
∂σΦn :ζ−1 :∂σΦn−∂ξΦn

ξ̇ > 0

S−1
n −

S−1
n :∂σΦn⊗S−1

n :∂σΦn

∂σΦn :S−1
n :∂σΦn+∂ξΦn

ξ̇ < 0

Increment :

δξ
(k)
n+1 =

Φ
(k)
n+1

±∂σΦ
(k)
n+1 :S(k)

n+1
−1

:∂σΦ
(k)
n+1−∂ξΦ

(k)
n+1

δεt (k)
n+1 = Λ

(k)
n+1 : δξ

(k)
n+1

δS(k)
n+1 = ∆Sδξ

(k)
n+1

σ
(k)
n+1 = S(k+1)

n+1
−1

: [εn+1 − α(Tn+1 − T0)
−ε

t(k+1)
n+1 ]

Consistent tangent operator :

Ln =

⎧⎨⎩ S−1
n −

S−1
n :∂σΦn⊗S−1

n :∂σΦn

∂σΦn :S−1
:∂σΦn−∂ξΦn

ξ̇ > 0

S−1
n −

S−1
n :∂σΦn⊗S−1

n :∂σΦn

∂σΦn :S−1
n :∂σΦn+∂ξΦn

ξ̇ < 0

To better understand the implementation of the parallel projection algorithm, and its ability to be combined
ith various local updating techniques, we provide a pseudo-code implementation with the closest-point updating

echnique in Table 2.

. Example problems

To illustrate the capability of the parallel projection algorithm and the updating schemes for the local residuals,
arious simulations of TWSMEs and superelasticity of SMAs are provided. All of the simulations are based on
iTi50, whose properties are provided in Table 3. The finite element analysis in all cases is carried out via the
arallel projection and return mapping algorithms. For both algorithms, the global residual R convergence tolerance
s eR = 10−6, and the local residual H convergence tolerance is eH = 10−6. The simulations are conducted via
ommercial software MATLAB(R) 2016b, on a workstation platform equipped with an Intel(R) Core i5-6500 CPU
nd 8 GB memory (RAM).

.1. 1D SMA problem

We start the discussion with 1D SMA problems, because their constitutive model can be analytically evaluated,
hich enables a direct verification of different algorithms. The boundary conditions and parameters of the simulated
D bar are shown in Fig. 2. The length of the structure is divided into a mesh of ten equally-sized bar finite elements,
ith a cross section of 0.1 m2.
9
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Table 2
Parallel projection — closest-point algorithm.

Initialization: initialize external and internal state variables at pseudo-time step n + 1

I. Let k = 1, Tn+1 = Tn + n · dT, Fn+1 = Fn + n · dF, d(1)
n+1 = dn

ξ
(1)
n+1 = ξn, ε

t(1)
n+1 = εt

n, S(1)
n+1 = Sn

II. Loop over Gauss points, calculate total strain ε
(k)
n+1 = Bd(k)

n+1 and go to inner loop

Inner Update: Update internal state variables for one iteration step

1. Calculate trial stress σ
(k)
n+1 using S(k)

n+1, ε
(k)
n+1 and ε

t(k)
n+1 from previous iteration,

and evaluate the local residual H (k)
= [H (k)

Φ , H (k)
εt ]

σ
(k)
n+1 = S(k)

n+1
−1

: [ε(k)
n+1 − α(Tn+1 − T0) − ε

t(k)
n+1]

HΦ
(k)

= Φ[σ (k)
n+1, Tn+1, ξ

(k)
n+1]

Hεt (k)
= εt

n + Λ
(k)
n+1[ξ (k)

n+1 − ξn] − ε
t(k)
n+1

If |HΦ
(k)

| ≤ eH
1 and ∥Hεt (k)

∥ ≤ eH
2

Compute consistent tangent stiffness modulus L(k+1), update internal variables
with the current values and go to Outer Loop

Else
Continue to step 2

2. Compute increment of inner state variables −(∂ H/∂ν)−1 H

δξ
(k)
n+1 =

Φ
(k)
n+1−∂σΦ

(k)
n+1 :ζ

(k)
n+1

−1
:Hεt

±∂σΦ
(k)
n+1 :ζ

(k)
n+1

−1
:∂σΦ

(k)
n+1−∂ξΦ

(k)
n+1

(+ : ξ̇ > 0, − : ξ̇ < 0)

∆σ
∗(k)
n+1 = ζ

(k)
n+1

−1
: [−Hεt ∓ ∆ξ

(k)
n+1∂σΦ

(k)
n+1] (− : ξ̇ > 0, + : ξ̇ < 0)

δε
t(k)
n+1 = −S(k)

n+1 : ∆σ
∗(k)
n+1 − (∆S : σ

(k)
n+1)δξ (k)

n+1
3. Update martensite volume fraction, transformation strain and compliance modulus

ξ
(k+1)
n+1 = ξ

(k)
n+1 + δξ

(k)
n+1

ε
t(k+1)
n+1 = ε

t(k)
n+1 + δε

t(k)
n+1

S(k+1)
n+1 = S(k)

n+1 + ∆Sδξ
(k)
n+1

σ
(k+1)
n+1 = S(k+1)

n+1
−1

: [ε(k)
n+1 − α(Tn+1 − T0) − ε

t(k+1)
n+1 ]

4. Compute consistent tangent stiffness modulus L(k) and go to Outer Update

Outer Update: Update displacement

III. Assemble global tangent stiffness matrix K , internal force Fint

K =
⋀
el

∑
i

wBT
Gi

L
(k)
Gi

BGi det J, F(k)
int =

⋀
el

∑
i

ϖ BT
Gi

σ
(k)
Gi

det J

IV. Calculate the global residual
R(k)

= F(k)
int − Fn+1

V. Evaluate the convergence condition
If ∥R(k)

∥ ≤ eR and for all Gaussian points ∥H (k)
G ∥ ≤ eH

G
Finalize the external variables un+1 and internal variables νn+1
Let n = n + 1, return to step I until the end of pseudo-time step

Else

Update the displacement field, d(k+1)
n+1 = d(k)

n+1 − K−1
[

R(k)
+

∂ R
∂ν

(
∂ H
∂ν

)−1 H (k)
]

Let k = k + 1, return to Inner Update

Fig. 2. Boundary conditions for the 1D bar problem with various hardening models.

For the simulation of TWSME, a temperature cycle ranging from 180 to 300 K is applied to the structure; the

structure is stress-free as no external loads are applied. When simulating the superelasticity of SMAs, the structure
10
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Table 3
Material properties of NiTi50.

Austenite (A) Martensite (M)

Young’s modulus E (Pa) 32.5 × 109 23.0 × 109

Thermal coefficient α (K−1) 22.0 × 10−6 22.0 × 10−6

Specific heat c (J/kgK) 400.0 400.0
Transformation start temperature As and Ms (K) 241 226
Transformation finish A f and M f temperature (K) 290 194

Highest transformation strain H 0.033
Material density ρ (kg/m3) 6500
Reference temperature T0 (K) 300
Entropy difference ρ∆s0 (J/m3K) −11.55 × 104

Table 4
Approximate maximum loading step for simulating superelasticity.

Methods Newton–Raphson Radial Return Closest-Point Cutting Plane

Return Mapping 9 × 108 N 9 × 108 N 9 × 108 N 9 × 108 N
Parallel Projection 3 × 109 N 3 × 109 N 3 × 109 N 3 × 109 N

is subjected to an axial loading cycle ranging from 5 × 106 N to 5 × 109 N, at a uniform temperature 310 K. Note
that the phase transformation evolves uniformly, since the structure undergoes uniaxial stress.

4.1.1. Accuracy of local residual updating scheme implemented in the parallel projection algorithm
To compare the accuracy and stability of the four different updating schemes for the local residuals, i.e. the

Newton Raphson, radial return, closest-point and cutting plane methods, we compare the their convergences when
embedded in the return mapping and parallel projection algorithms, cf. Figs. 3 and 4. The comparison is conducted
in the TWSME case with the analytic solution [14]

ξ =
1

ρbM
[|σ |H +

1
2
∆Sσ 2

+ ρ∆s0(T − Ms)]

εt
=

Hsgn(σ )
ρbM

[|σ |H +
1
2
∆Sσ 2

+ ρ∆s0(T − Ms)]
(31)

hich uses the quadratic polynomial hardening function, and bM
= −∆s0(Ms − M f ). The convergence is compared

t the temperature of 220 K, where the error is computed as

ϵξ = |ξANA − ξNUM|

ϵεt = |εt
ANA − εt

NUM|
(32)

ere, the subscripts ANA and NUM refer to the analytical and numerical solutions, respectively.
In Figs. 3(a) and 4(a), the arrow refers to the maximum temperature increment that we use with each method

o attain convergence. These methods solve the same equations but their radii of convergence vary. Indeed, as seen
n Figs. 3 and 4, eliminating variables to simplify the local DEs hinders the convergence, e.g. the cutting plane

ethod. In addition, we also notice that the parallel projection algorithm generally allows for larger temperature
ncrements than the return mapping algorithm which strictly enforces the residual equation H = 0 at each global
teration. This finding is consistent in simulating the superelasticity, cf. Table 4

.1.2. Adaptability of the parallel projection algorithm with various constitutive models
To demonstrate that the Parallel Projection algorithm is able to handle different constitutive relationships

i.e. hardening models) of SMAs, we repeat the above study. However, we only use the closest-point scheme
nd replace the hardening function ( f ) with the most popular models proposed in the past two decades. Due
o differences in fitting techniques for Differential Scanning Calorimetry (DSC)-obtained experimental data [12],
arious hardening functions have been created to model the hysteresis curve of TWSMEs and superelasticity. These
odels, cf. Eq. (33), include the quadratic model proposed by Lagoudas [14], the cosine model proposed by
11
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m
u

Fig. 3. Error between the 1D analytic solution and different return mapping schemes for updating internal state variables at T = 220 K.

Liang [10,11], the exponential model proposed by Tanaka [9], and the smooth model proposed by Lagoudas [14].

Quadratic : f (ξ ) =

{ 1
2ρbMξ 2

+ (µ1 + µ2)ξ (ξ̇ > 0)
1
2ρbAξ 2

+ (µ1 − µ2)ξ (ξ̇ < 0)

Cosine : f (ξ ) =

{ ∫ 0
ξ

−
ρ∆s0
aM

c
[π − cos−1(2ξ − 1)]dξ + (µc

1 + µc
2)ξ (ξ̇ > 0)∫ 0

ξ
−

ρ∆s0
a A

c
[π − cos−1(2ξ − 1)]dξ + (µc

1 − µc
2)ξ (ξ̇ < 0)

(33)

Exponential : f (ξ ) =

{
ρ∆s0
aM

e
[(1 − ξ ) ln(1 − ξ ) + ξ ] + (µe

1 + µe
2)ξ (ξ̇ > 0)

−
ρ∆s0

a A
e

[ξ ln(ξ ) − ξ ] + (µe
1 − µe

2)ξ (ξ̇ < 0)

Smooth : f (ξ ) =

⎧⎨⎩
1
2ρbM

[
ξ +

ξn1+1

n1+1 +
(1−ξ )n2+1

n2+1

]
(ξ̇ > 0)

1
2ρbA

[
ξ +

ξn3+1

n3+1 +
(1−ξ )n4+1

n4+1

]
(ξ̇ < 0)

the parameters a, b, n and µ in Eq. (33), are defined in [14]. In Fig. 5, we present the evolution of strain and
artensite volume fraction under a temperature cycle, and the evolution of stress and martensite volume fraction

nder a loading cycle, at the left-most Gauss point of the left-most element.
These results agree with the return mapping computations and the analytical solutions presented in [14].
12
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Fig. 4. Error between the 1D analytic solution and different parallel projection schemes for updating internal state variables at T = 220 K.

.2. 3D SMA examples

.2.1. Computation efficiency of the parallel projection algorithm in 3-Dimensions
In this section, we compare the parallel projection algorithm with the return mapping algorithm in a 3D

imulation, to exemplify the computation efficiency of the parallel projection algorithm. The 3D SMA bar that
s meshed with 2 × 10 × 2 hexahedral elements, is subject to a coupled temperature and mechanical loading cycle,
ith amplitude ranges 210–310 K and 2 × 106–2.2 × 107 N/m2, cf. Fig. 6
In Fig. 7, we see that the bar deforms in all three directions due to the Poisson effects
Fig. 8 compares the evolution of the axial strain ε

GA
xx , stress σ

GA
xx and martensite volume fraction ξGA for the two

ethods. Here, point A is the right tip point of the structure, shown in Fig. 6. GA is the closest Gauss point to the
oint A. Note that the phase transformation is influenced by both the temperature and load. From the results, we
ee an agreement between the parallel projection and return mapping computations. Fig. 9 shows the convergence
ate of the global residual R at thermomechanical loading step size of dT = 0.1 K and dF = 1 × 105 N/m2. We
onjecture that the radius of quadratic convergence of the return mapping algorithm is adversely influenced due to
nforcing H to zero at each outer iteration. We also noticed that all four methods exhibit quadratic convergence
or the parallel projection algorithm, although their radii of convergence vary. Indeed, divergence was occasionally
bserved. We suggest using a line-search method to mitigate divergence, as proposed for the cutting plane method
escribed in [31,46].
13
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i

Fig. 5. Simulating TWSMEs and superelasticity with the parallel projection algorithm using different hardening models.

Fig. 6. Geometry and boundary conditions of the 3D SMA bar.

Tables 5 and 6 present the maximum thermomechanical loading increment allowed for the return mapping and
parallel projection algorithms for this 3D problem. We observe that the parallel projection algorithm again exhibits
larger increments than the return mapping algorithm, which is consistent with our findings in the 1D problem.

Table 7 shows the number of inner and outer iterations needed for a single-element at one time step, using the
closest-point scheme with thermomechanical loading step size of dT = 0.1 K and dF = 1 × 105 N/m2. Here, k
s the global iteration counter and l is the local counter. Since the parallel projection uses a cross-iteration scheme,
14
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t
t
i

Fig. 7. Deformation of a 3D bar under coupled thermomechanical loading.

Fig. 8. Simultaneous presence of TWSMEs and superelasticity in 3D bar under a temperature and loading cycle.

here is only a global counter k. As seen in the table, the parallel projection scheme requires 6 iterations, as opposed
o the 11 outer iterations for the return mapping algorithm. In total the return mapping algorithm requires 11 outer
terations and 4 inner iterations for each of the 8 Gauss point for a total of N = 11 · 4 · 8 = 352 local computations

versus N = 6 · 8 = 48 for the parallel projection method. Ultimately, the computed state variables for the two

methods are identical (within the specified tolerances) as expected, since the same equations are solved.

15
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Fig. 9. Convergence history of different schemes for updating internal state variables at T = 270 K.

Table 5
Approximate maximum temperature step, with fixed dF = 1 × 105 N/m2.

Methods Newton–Raphson Radial Return Closest-Point Cutting Plane

Return Mapping 1.04 K 1.04 K 1.04 K 0.98 K
Parallel Projection 4.7 K 4.7 K 4.7 K 4.7 K

Table 6
Approximate maximum loading step, with fixed dT = 0.1 K.

Methods Newton–Raphson Radial Return Closest-Point Cutting Plane

Return Mapping 1 × 107 N 1 × 107 N 1 × 107 N 1 × 107 N
Parallel Projection 5 × 107 N 5 × 107 N 5 × 107 N 5 × 107 N

Table 7
Gauss point computation iteration count using the closet-point scheme, T = 230 K.

Methods k l/Gauss Point N d A
y ξG A εt

yy
G A

Return Mapping 11 4 352 0.178241294 0.9711878 0.0320491973
Parallel Projection 6 / 48 0.178241294 0.9711880 0.0320491924

Now, we investigate the effect of the mesh size on the computation time for the two algorithms, cf. Fig. 10. In all
ases, the parallel projection method yields computation savings of greater than 50% without losing accuracy.

The computational savings of the parallel projection algorithm is due to the need for fewer global equilibrium
terations, and the fact that we do not have to satisfy the local evolution equations. Despite these promising results,
t cannot be stated conclusively that the parallel projection approach will be more computationally efficient than
he traditional return mapping method for any mesh, SMA constitutive law or loading condition.

. Conclusions

We present a novel framework to improve upon the computational efficiency of the classical return mapping
lgorithm in finite element analysis of SMAs. Instead of using a nested iteration, the proposed approach—the
arallel projection algorithm—uses a sequential iterative scheme, which is able to significantly reduce computation
ime while not increasing the size of tangent matrix within the Newton–Raphson iterations. In addition, we provide
he analytical update for the internal state variables. To test the robustness of the parallel projection algorithm,
arious numerical analysis examples have been studied. The examples show that parallel projection is able to achieve

table convergence, and obtain results that are consistent with those simulated using established methods.

16
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Fig. 10. Comparison between the parallel projection and return mapping algorithms.
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ppendix. Analytical derivation of Newton–Raphson updating scheme

In this section, we present the derivation of the analytical solution of the increment −

(
∂ Hn
∂νn

)−1
Hn for updating

the internal state variable vector ν during the Newton–Raphson procedure. Due to the complexity of deriving the
analytical solution of the aforementioned operator, previous research generally simplifies the form of local residual
H to get approximate derivations, i.e. the closest-point and cutting plane methods [14]. This may lead to stability
issues when using the results to update the global state variable u, since the tangent stiffness modulus L gradually
becomes more inaccurate as the residual is simplified. Another option is to numerically calculate the inverse of
∂ Hn
∂νn

using QR or LU decomposition. However, due to the large magnitude of the compliance modulus S in an
ff-diagonal position, the matrix ∂ Hn

∂νn
is ill-conditioned.

Here, we use the Schur algorithm to provide the analytical solution of the inverse of ∂ Hn
∂νn

. For simplicity, we
only present the derivation for the forward transformation, i.e. ξ̇ > 0. The derivation for the reverse transformation,
i.e. (ξ̇ < 0), can be obtained similarly following the derivation presented here.

To start, we first represent the inverse of ∂ Hn/∂νn using the Schur formulation [47].(
∂ Hn

∂νn

)−1

=

[
(A + BC)−1 (A + BC)−1B
C(A + BC)−1

−I + C(A + BC)−1B

]
(A.1)

ith

∂ Hn

∂νn
=

⎡⎢⎢⎣
∂ξΦn 01×6 01×1
Λn −I6×6 06×1
∆S 01×6 −I1×1

∂σ nΦ
T
n

∂σΛn : ∆ξn

01×6

06×1 −S−1
n −S−1

n : I6×6 : σ n −I6×6

⎤⎥⎥⎦ =

[
A B
C D

]
(A.2)

where ∆ξ = ξ − ξ and ∂ Λ have nonzero value in the forward transformation, cf. Eq. (11)
n n n−1 σ

17



Z. Kang, D.A. Tortorelli and K.A. James Computer Methods in Applied Mechanics and Engineering 389 (2022) 114364

(
H
w
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Meanwhile, we define the local residual H in block matrix form as

Hn =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
HΦ

Hεt

HS

Hσ

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =

{
H̃
Hσ

}
(A.3)

Then the increment of the internal state variable for Newton–Raphson iterations is expressed as

∆ν = −

(
∂ Hn

∂νn

)−1

Hn =

{
− (A + BC)−1 H̃ − (A + BC)−1BHσ

− C(A + BC)−1 H̃ − [−I + C(A + BC)−1B]Hσ

}
(A.4)

Note that the solution shown in Eq. (A.4) does not change the ill-conditioned characteristics of the matrix
A + BC), since A−1 is nearly singular due to the fact that the large number S is still in an off-diagonal position.
ence, the key to obtaining an accurate solution of the operators lies in computing the inverse of (A + BC). Again,
e use the Schur formulation to calculate the inverse of the matrix.

(A + BC)−1
=

[
(A′

− B′D′−1C′)
−1

−(A′
− B′ D′−1C′)

−1
B′D′−1

−D′−1C′(A′
− B′D′−1C′)

−1
D′−1

+ D′−1C′(A′
− B′D′−1C′)

−1
B′D′−1

]
(A.5)

with

A + BC =

⎡⎣ ∂ξΦn −∂σΦn : S−1
n −∂σΦn : S−1

n : I6×6 : σ n

Λn

∆S
−(Sn + ∂σΛn : ∆ξn) : S−1

n −∂σΛn : ∆ξn : S−1
n : I6×6 : σ n

01×6 −I1×1

⎤⎦
=

[
A′ B′

C′ D′

] (A.6)

Here, D′−1 and (A′
−B′D′−1C′)−1 need to be evaluated. Note that ∂σΛ belongs to the null space of σ , hence is not

invertible [48]. However, (Sn + ∂σΛn : ∆ξn) is non-singular. Defining ζ n = Sn + ∂σΛn : ∆ξn , D′−1 is expressed
using the Schur form as

D′−1
=

[
−Sn : ζ−1

n Sn : ζ−1
n : ∂σΛn : ∆ξn : S−1

n : I6×6 : σ n

01×6 −I1×1

]
(A.7)

With the above solution, one also obtains that

B′D′−1
=

[
∂σΦn : ζ−1

n ∂σΦn : ζ−1
n : S−1

n : S−1
n : I6×6 : σ n

]
D′−1C′

=

[
−Sn : ζ−1

n : (Λn − ∂σΛn : ∆ξn : S−1
n : I6×6 : σ n : ∆S)

−∆S

]
=

[
−Λ̃n

−∆S

] (A.8)

hen (A′
− B′D′−1C′)

−1
is calculated as

(A′
− B′D′−1C′)

−1
= −Q, Q = ∂σΦn : ζ−1

n : ∂σΦn − ∂ξΦn (A.9)

nd Q is a scalar. Hence

C(A + BC)−1
=

[
ζ−1

n :∂σΦn
Q Ln Ln : Sn : S−1

n : σ n

]
C(A + BC)−1B =

ζ−1
n : ∂σΦn : ∂σΦn

T

Q
+ Ln : ∂σΛn : ∆ξn

(A.10)

Ultimately, we obtain the analytical expressions of the internal state variable increment for the forward
ransformation as

∆ν =

⎧⎪⎪⎨⎪⎪⎩
δξ

δεt

δS

⎫⎪⎪⎬⎪⎪⎭ =

⎧⎪⎪⎨⎪⎪⎩
∆ξ ∗

+ ϑ

∆εt∗
+ Λ̃n : ϑ + Ψ̃

∆S∗
+ HS + ∆S · ϑ

∗

⎫⎪⎪⎬⎪⎪⎭ (A.11)
δσ ∆σ + Ln : Sn : Ψ
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d

G

where

∆ξ ∗
=

Φn − ∂σΦn : ζ n
−1

: Hεt

∂σΦn : ζ n
−1

: ∂σΦn − ∂ξΦn
(ξ̇ > 0)

∆σ ∗
= ζ−1

n : [−Hεt − ∆ξ ∗
: ∂σΦn] (ξ̇ > 0)

∆εt∗
= −Sn : ∆σ ∗

− (∆S : I : σ n)∆ξ ∗

∆S∗
= ∆S∆ξ ∗

Λ̃n = Sn : ζ−1
n : (Λn − ∂σΛn : ∆ξn : S−1

n : I6×6 : σ n : ∆S)

Ψ = Hσ − S−1
n : I : σ n : HS

Ψ̃ = Sn : ζ n
−1

: ∂σΛn : ∆ξn : Ψ

ϑ =
∂σΦn

∂σΦn : ζ−1
n : ∂σΦ

(k)
n − ∂ξΦn

: ζ−1
n : Sn : Ψ (ξ̇ > 0)

(A.12)

For the inverse transformation, we have ζ n = Sn , Λ̃n = Λn and Ψ̃ = 0, since ∂σΛn = 0. According to the

efinition of Φ in Eq. (14), we shall only modify the formulations for ∆ξ ∗, ∆σ ∗ and ϑ

∆ξ ∗
=

Φn − ∂σΦn : Sn
−1

: Hεt

−∂σΦn : Sn
−1

: ∂σΦn − ∂ξΦn
(ξ̇ < 0)

∆σ ∗
= S−1

n : [−Hεt + ∆ξ ∗
: ∂σΦn] (ξ̇ < 0)

ϑ =
∂σΦn

−∂σΦn : S−1
n : ∂σΦ

(k)
n − ∂ξΦn

: Ψ (ξ̇ < 0)

(A.13)

Then, we obtain the consistent tangent operator (∂ R/∂ν)(dν/du) using the aforementioned expression of (∂ H/∂ν)−1.

iven that

∂ Rel,n

∂νn
=

[
0 0 0 wBT det J

]
∂ HG,n

∂uel,n
=

⎡⎢⎢⎣
0
0
0

S−1
n : B

⎤⎥⎥⎦ (A.14)

and dν/du = −(∂ H/∂ν)−1(∂ H/∂u) from Eq. (22), the consistent tangent operator is derived as

∂ Rn

∂νn

dν

du
= −

⋀
el

∑
G

∂ Rn

∂νG,n

(
∂ Hn

∂νG,n

)−1
∂ HG,n

∂uel,n

=

⋀
el

∑
G

wBT
G[I − C(A + BC)−1B]G : S−1

G,n BG det JG

=

⋀
el

∑
G

wBT
GLn BG det JG

(A.15)

where

Ln =

⎧⎨⎩ ζ−1
n −

ζ−1
n :∂σΦn⊗ζ−1

n :∂σΦn

∂σΦn :ζ−1
n :∂σΦn−∂ξΦ

ξ̇ > 0

S−1
n −

S−1
n :∂σΦn⊗S−1

n :∂σΦn
−1 ξ̇ < 0

(A.16)

∂σΦn :Sn :∂σΦn+∂ξΦn
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F

R

In addition, we obtain that (∂ H/∂ν)−1(∂ H/∂u)

(
∂ Hn

∂νn

)−1
∂ Hn

∂un
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣
−

∂σΦn
T
:ζ−1

n
∂σΦn :ζ−1

n :∂σΦn−∂ξΦ

−
Λ̃n :∂σΦn

T

∂σΦn :ζ−1
n :∂σΦn−∂ξΦ

: ζ−1
n + Sn : ζ−1

n − I6×6

−
∆S:∂σΦn

T

∂σΦn :ζ−1
n :∂σΦn−∂ξΦ

: ζ−1
n

−Ln

⎤⎥⎥⎥⎥⎥⎦ B ξ̇ > 0

⎡⎢⎢⎢⎢⎢⎣
−

∂σΦn
T
:S−1

n
∂σΦn :S−1

n :∂σΦn+∂ξΦn

−

⎡⎣ Λn

∆S

⎤⎦:∂σΦn
T
:S−1

n

∂σΦn :S−1
n :∂σΦn+∂ξΦn

−Ln

⎤⎥⎥⎥⎥⎥⎦ B ξ̇ < 0

(A.17)

where

Λ̃n = Sn : ζ−1
n : (Λn − ∂σΛn : ∆ξn : S−1

n : I6×6 : σ n : ∆S) (A.18)

urther, (∂ R/∂ν)(∂ H/∂ν)−1 is obtained as

∂ Rn

∂νn

(
∂ Hn

∂νn

)−1

=

⎧⎪⎨⎪⎩
wBT

[
ζ−1

n :∂σΦn
Q Ln Ln : C−1

: σ n −Ln : Sn

]
det J ξ̇ > 0

wBT
[

S−1
n :∂σΦn

Q Ln Ln : C−1
: σ n −Ln : Sn

]
det J ξ̇ < 0

(A.19)
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