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Optimization for Power and
Energy Systems With Model
Predictive Control
This article explores the optimization of plant characteristics and controller parameters
for electrified mobility. Electrification of mobile transportation systems, such as automo-
biles and aircraft, presents the ability to improve key performance metrics such as effi-
ciency and cost. However, the strong bidirectional coupling between electrical and
thermal dynamics within new components creates integration challenges, increasing
component degradation, and reducing performance. Diminishing these issues requires
novel plant designs and control strategies. The electrified mobility literature provides
prior studies on plant and controller optimization, known as control co-design (CCD). A
void within these studies is the lack of model predictive control (MPC), recognized to
manage multi-domain dynamics for electrified systems, within CCD frameworks. This
article addresses this through three contributions. First, a thermo-electromechanical
hybrid electric vehicle (HEV) powertrain model is developed that is suitable for both
plant optimization and MPC. Second, simultaneous plant and controller optimization is
performed for this multi-domain system. Third, MPC is integrated within a CCD frame-
work using the candidate HEV powertrain model. Results indicate that optimizing both
the plant and MPC parameters simultaneously can reduce physical component sizes by
over 60% and key performance metric errors by over 50%. [DOI: 10.1115/1.4050399]

1 Introduction

This article addresses plant and controller optimization for
power and energy systems. There is an ongoing shift in the
expectations of mobile power systems such as vehicles and air-
craft, which has promoted the development of partially or fully
electrified vehicle architectures. In the U.S. transportation sector,
electricity as an energy source is predicted to grow, on average,
7.4% per year up to 2050 [1]. Electrification of these systems is
motived by its potential to meet new metrics: (a) Reduce green-
house gas emissions [2] to meet future standards set by different
countries [3]; (b) increase efficiency [4,5]; and (c) minimize fuel
cost [5]. The electrification of mobility and transportation systems
necessitates the introduction of new components into conventional
designs. The dynamics of these new electrical components are
strongly coupled to temperature [6–8], triggering integration
issues that complicate overall performance and component degra-
dation [9,10].

Offsetting these integration issues requires development of new
(i) real-time control algorithms and (ii) plant design methodolo-
gies to maximize closed-loop plant performance for these dynami-
cally complex systems. An additional possibility is the ability to
develop both of these simultaneously, known as (iii) control co-
design. As presented below, prior literature has explored several
of these areas, usually in isolation from the overall system
evaluation.

1.1 Advancements in Real-Time Control. The automotive
literature presents several alternative strategies for energy man-
agement of powertrains with electromechanical dynamics. This
includes iterative dynamic programming [11], stochastic dynamic

programing [12,13], equivalent consumption minimization strat-
egies [14,15], and rule-based strategies [16,17], as well as strat-
egies enhanced by machine learning [18] and data-driven methods
[19]. Some of these strategies have been extended to include con-
sideration of component health [20], such as using stochastic
dynamic programming to match desired outputs while minimizing
energy cost and energy storage device degradation [21]. Building
on this, recent studies include thermal dynamics of the cabin [22]
and battery pack [23] under the supervision of the energy manage-
ment controller. This allows for the consideration of the bidirec-
tional coupling between electrical and thermal dynamics in hybrid
electric vehicles (HEVs) and electric vehicles (EVs), mitigating
integration issues. Real-time optimization algorithms are also
explored to manage mechanical powertrain, engine coolant, and
thermal cabin dynamics to reduce heating, ventilation, and air
conditioning energy consumption [24]. Model-based algorithms
such as model predictive control (MPC) are an alternative option
to manage multi-domain dynamics of vehicles [25,26]. This
includes hierarchical and distributed MPC architectures, which
are particularly capable of managing timescale separation caused
by fast electrical and slow thermal dynamics [27–30].

1.2 Advancements in Plant Design. Plant design can be
categorized by studies focusing on sizing optimization and topol-
ogy optimization. Sizing optimization seeks to optimize compo-
nent sizes within the system, including thermal component design
[31] and electromechanical components [32,33] within a vehicle.
Topology generation and optimization seeks to adjust the configu-
ration or architecture of the system components [34,35]. These
methods can be combined to simultaneously optimize both the
sizing and topology of the plant to maximize performance. The
aircraft design literature also explores sizing and topology optimi-
zation, often with an emphasis on structural design [36–38].

1.3 Advancements in Control Co-Design. The optimization
of plant and controller features, also referred to as control co-
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design (CCD), seeks to maximize closed-loop plant performance.
Sequential optimization is used in practice often, where the plant
design is first optimized, and then the controller design is then
optimized for that plant [39]. This can be extended to an alternat-
ing or iterative procedure [40]. However, unless the plant design
and controller design problems are separable, the optimal plant
and controller variable values must be identified using simultane-
ous or nested optimization strategies [41]. CCD methods have
been applied to automotive systems, with a focus on HEV power-
trains with electromechanical dynamics. Studies include optimiza-
tion of component sizes alongside the supervisory controller
parameters [42,43], and optimization of the gear ratios and topol-
ogy with a nested control problem [44].

The maturity of the electrified mobility literature provides stud-
ies on plant, controller, and CCD optimization strategies. How-
ever, there are three notable gaps in this literature. First, while
there is a shift toward inclusion of thermal dynamics in the model,
most studies emphasize electromechanical dynamics of these sys-
tems. Limiting the modeling of thermal dynamics in these systems
does not address the integration issue of electrical components
whose performance is highly dependent on temperature. Second,
and as a result of the first gap, the application of CCD optimiza-
tion frameworks has not been explored in detail for electrified
mobility systems with thermal, electrical, and mechanical dynam-
ics. Third, CCD frameworks center on nested control problems
[44], and occasionally tune controller parameters as well [45].
However, studies of CCD with MPC have yet to be explored in
detail for electrified mobility, being limited to chemical plant
applications [46–48]. To apply CCD frameworks to electrified
systems, the controller strategies embedded within CCD frame-
works should be inclusive to the MPC strategies used within these
systems.

This article addresses these gaps through three contributions to
the literature:

(1) A thermo-electromechanical model of a power-split HEV
powertrain is developed. This model captures the dynamics
of the electrical and mechanical powertrain components, as
well as the thermal management subsystem. The graph-
based structure of the model lends itself to be easily imple-
mented in design optimization frameworks, as well as
development of MPC algorithms.

(2) Simultaneous plant and controller optimization is applied
to systems with thermal, electrical, and mechanical
dynamic elements, using the HEV powertrain model as the
candidate system. The simultaneous optimization of the
plant and controller design variables is compared against
plant feature optimization and sequential optimization.

(3) MPC is embedded into the plant and controller optimiza-
tion framework, reflecting the advanced control strategies
appropriate for systems with multi-domain dynamics. This
allows for the optimization of MPC parameters such as the
time-step, preview, control input limits, and state tracking
gains. This article will focus on centralized MPC, leaving
extensions to hierarchical MPC and limited computational
resources for future studies.

To develop these contributions, Sec. 2 reviews the graph-based
modeling techniques used to create the HEV powertrain model. It
also reviews a recently developed design optimization framework
for connecting graph-based models to plant and controller design
optimization. Sections 3 and 4 present the formulation of the
MPC problem, and the CCD framework overview, respectively.
Section 5 provides an overview of the thermo-electromechanical
HEV powertrain model. In Sec. 6, the design optimization prob-
lem is formulated and the model under MPC control is validated
for a base design. Section 7 presents the optimization results from
(i) optimization of only the HEV powertrain plant design, (ii)
sequential optimization of the plant and controller, and (iii) simul-
taneous optimization of the plant and controller. The article ends

with a summary of the contributions and insights from the optimi-
zation studies.

2 Graph-Based Modeling and Design

This section reviews the techniques utilized to model multi-
domain dynamic systems and perform optimization. Component
and system dynamics are modeled using a conservation-based,
graphical modeling technique. Optimization is performed using a
four step design optimization framework based on modifying the
elements in the graph-based models using design variables.

2.1 Graph-Based Modeling. The components and systems in
this article are modeled using a modular graph-based modeling
approach, with full descriptions presented in Refs. [49–52]. Figure 1
presents the elements of a graph-based model. A vertex represents an
energy storage element, and is described by a storage capacitance Ci

and a state xi. An external vertex describes a state xs
k with dynamics

external to the model. An edge represents a power flow yj, and is
described by the nonlinear function fj:

yj ¼ fj xhead
j ; xtail

j ; uj

� �
(1)

In Eq. (1), xhead
j is the state of the vertex at the head of the edge,

xtail
j is the state of the vertex at the tail of the edge, and uj is

an input. Note that all edges are not required to have an input.
A graph with i ¼ 1;…;Nv vertices, j ¼ 1;…;Ne edges, and k ¼
1;…;Nt sink vertices is described by:

C _x ¼ �Myþ Dys (2)

In Eq. (2), C 2 RNv�Nv is the diagonal matrix of storage capaci-
tances, x 2 RNv is the vector of states, y 2 RNe is the vector of
power flows, and M 2 RNv�Ne maps the power flows to the state
vector. An entry of M is þ1 if a vertex is the tail of an edge, �1 if
a vertex is a head of an edge, and 0 otherwise. Note that the mod-
els presented in this article do not feature source edge elements in
the graph, and so D ¼ 0 and ys ¼ 0. These terms will be excluded
for the remainder of this article.

The models presented in this article contain three types of verti-
ces, described in Table 1. Type 1 vertices often describe thermal
capacitances. Type 2 vertices typically describe inductances, elec-
trical capacitances, inertias, and mechanical spring elements.
Type 3 vertices are reserved for storage capacitances relating to

Fig. 1 Graph-based model with the primary elements
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nonlinear behaviors, such as those found in batteries. Similarly,
Table 2 presents the eight categories of edges used in the models
of this work. Note that any of these edges can have a nonlinear
expression for the parameter aj.

2.2 Multi-Domain Design Optimization Framework. Plant
and controller optimization is performed using a design optimiza-
tion framework for multi-domain conservation-based systems
[53]. Starting with a graph-based model described by Eq. (2), opti-
mization is performed using four steps:

(1) The graph-based model is augmented with design matrices
to describe sizing and topology changes, yielding Eq. (3).
Sizing of elements is controlled by continuous plant design
variables hc 2 RNc , and topology changes are controlled by
discrete plant design variables z 2 RNz . The design matrix
Wc 2 RNv�Nv is a diagonal matrix that maps the continuous
plant design variables to modifications of the storage
capacitances. The matrix Uc 2 RNv�Nv acts similarly, but
maps the discrete design variables to modifications of the
storage capacitances. The matrix W 2 RNe�Ne is a diagonal
matrix that maps the continuous variables to modifications
of the power flows, and U 2 RNe�Ne is a diagonal matrix
that maps the discrete variables to power flow
modifications.

WcUcC _x ¼ �MWUy (3)

(2) The objective function is defined for optimization. Equation
(4) defines the aggregate objective function Jtot for this
work, with four individual objectives:

Jtot ¼ wstJst
m þ wscJsc

m þ wenJen
m þ wsizeJsize

m (4)

Equation (5) defines the state tracking error objective, Jst,
with weight wst. The objective is evaluated at discrete times
j ¼ 1;…;Nfinal with time-step Dte and final time
tfinal ¼ NfinalDte. The vector r 2 RNv contains the reference
states, and the matrix Kx 2 RNv�Nv internally weighs the
individual reference state errors, with kxk2

Kx
¼ xTKxx. The

function is normalized by a selected constant Jst, which
will allow expected Jst values to be in the range of 0–20 in
this work. Similar normalization terms will be used for the

remaining individual objectives to yield values of similar
magnitude.

Jst ¼
1

J st

XNfinal

j¼1

kxj � rjk2
Kx

(5)

Equation (6) defines the state constraint violations objec-
tive, Jsc, with weight wsc, evaluated at the same times as Jst.

The slack variables s 2 RNv are equal to the maximum of����xi � xmin;i

����;
����xi � xmax;i

����
" #

for state xi, with xmin;i and xmax;i

as the minimum and maximum allowable state values,

respectively. The matrix Ks 2 RNv�Nv internally weighs the

terms. The function is normalized by a selected constant J sc.

Jsc ¼
1

J sc

XNfinal

j¼1

ksjk2
Ks

(6)

Equation (7) defines the energy utilization objective, Jen,
with weight wen. This function relates to the total energy
passing through the edges over the test period, with the
integral evaluated using the trapezoidal rule with the same
time interval as Jst. The matrix Kp 2 RNe�Ne internally
weighs the terms, with Kp;j;j as the internal weight for edge
j. The function is normalized by a selected constant J en.

Jen ¼
1

J en

XNe

j¼1

ðtfinal

0

Kp;j;jyj tð Þdt

� �
(7)

These first three objectives are calculated by evaluating the
dynamics of the system under open-loop or closed-loop
control. Equation (8) describes the final objective Jsize, with
weight wsize, to minimize the size of the continuous plant
design variables, with internal weights wc. The function is
normalized by a selected constant J size.

Jsize ¼
1

J size

wchc (8)

These four objectives are chosen to directly capture impor-
tant performance, efficiency, and sustainability metrics for
automotive applications. For identification of optimal
designs for nonconvex problems, the integer m ¼ 4 is used
for compromise programming [54] when optimizing, as Eq.
(4) shows.

(3) The constraints for the optimization problem are defined.
The plant design variables hc and z are bounded between
minimum values hc and z, and maximum values hc and z.
In addition, to optimize controller parameters, the control-
ler design variables / 2 RN/ are defined [55]. These have
minimum and maximum bounds / and /, respectively.
Equation (9) defines the constraints.

hc � hc � hc

z � z � z

/ � / � /

(9)

(4) The optimization problem is formulated using the previous
three steps and solved. The shooting method is used by
simulating the dynamics of Eq. (3) and evaluating the
objective function of Eq. (4). Design variables are updated
to ensure the constraints of Eq. (9) are met.

3 Model Predictive Control Formulation

This section reviews the formulation of the centralized MPC
problem [28,56]. This formulation is used to control the HEV

Table 1 Vertex types

Vertex type Storage capacitance Ci

1 ci

2 cixi

3 ci xið Þ

Table 2 Edge types

Edge type Power flow yj

1 ajx
tail
j

2 ajx
head
j

3 ajx
tail
j xhead

j

4 aj xtail
j

� �2

5 aj xtail
j � xhead

j

� �
6 aj xtail

j

� �3

7 ajujx
tail
j

8 ajujx
tail
j xhead

j
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powertrain energy dynamics within the design optimization pro-
cess. In this work, the powertrain dynamics are applied assuming
an autonomous system. This will permit the controller to make
tradeoffs between state tracking and state constraint violations
during operation. The prediction model for MPC is determined by
linearizing the augmented graph-based model of Eq. (3) about a
given time index p. Linearization is performed about the most
recent operating states and inputs of the system at time index k,
i.e., p ¼ k. As some storage capacitances are potentially zero, this
creates a set of differential algebraic equations (DAEs), which are
discretized temporarily using the forward Euler method and time-
step Dt. Equation (10) presents the linearized, discretized model
equations, with Cp 2 RNv�Nv as a diagonal matrix akin to the
capacitance matrix. The matrices Ap 2 RNv�Nv and Bp 2 RNv�Nu

are similar to the state and input matrices, respectively, of state
space models. The column vector u 2 RNu contains Nu inputs.
The matrix Vp 2 RNv�Nt describes how external states impact the
dynamics, xs 2 RNt are the external states, and Wp 2 RNv

describes constant terms created from linearization about a none-
quilibrium point.

Cpxkþ1 ¼ Cp þ DtApð Þxk þ DtBpuk þ DtVpxs
k þ DtWp (10)

To stabilize the discrete model for a given time-step, model reduc-
tion can be performed. This work residualizes faster states by set-
ting entries of Cp below a minimum value to 0.

Equation (11) defines the optimization problem solved for each
time the controller is called, over a prediction horizon of Np steps.
The decision variables are the inputs uk ¼ ukjk;…; ukþNp�1jk½ �, the
states xk ¼ xkjk;…; xkþNp jk½ �, and the slack variables
sk ¼ skjk;…; skþNp�1jk½ �. The first constraint of Eq. (11) defines the
state dynamics. The second through fourth constraints describe
the conditions of the slack variables for the soft constraints. The
fifth constraint bounds the inputs between umin and umax. The sixth
constraint is to keep inputs within a range of the previous set of
inputs sent to the system, uprev, using variable 0 � e � 1. This
acts similar to a rate limit, but as a tighter input bound over the
prediction horizon. The seventh constraint fixes certain inputs to
be equal to state values, using matrices Z1 2 RNu�Nu and
Z2 2 RNu�Nv . This is used to relate pump and fan speeds to mass
flow rates. The eighth constraint provides the final value for the
algebraic states xa at index k þ Np, which cannot be calculated
without knowledge of inputs at this time index. The final con-
straint sets the initial conditions for the dynamic states xd , pro-
vided from the plant dynamics when the controller is called.

J�k ¼ min Jk

uk; xk; sk

subject to 8j 2 0;Np � 1½ � Ckxkþjþ1jk ¼ Ck þ DtAkð Þxkþjjk

þDtBkukþjjk þ DtVkxs
kþjjk

þDtWk

xmin � skþjjk � xkþjþ1jk

xkþjþ1jk � xmax þ skþjjk

skþjjk � 0

umin � ukþjjk � umax

1� eð Þuprev � ukþjjk � 1þ eð Þuprev

Z1ukþjjk ¼ Z2xkþjjk

xa
kþNp jk ¼ xa

kþNp�1jk

xd
kjk ¼ xd

k

(11)

Equation (12) defines the objective function Jk at time index k,
which is an aggregate of two terms. The first term represents state
tracking error with weighting matrix Kx;c, while the second repre-
sents state constraints with weighting matrix Ks;c. These functions

are similar to Eqs. (5) and (6), but are evaluated only over the
horizon of Np steps. The predicted state vector for calling the con-
troller at time index k is xkþjjk, for j ¼ 0;…;Np.

Jk ¼
XNp

j¼0

kxkþjjk � rkþjjkk2
Kx;c
þ
XNp�1

j¼0

kskþjjkk2
Ks;c

(12)

4 Control Co-Design Framework

This section explains the optimization procedure used for con-
trol co-design in this article. This work uses a genetic algorithm
(GA) to optimize the values of the plant and controller design var-
iables. However, the core concept is applicable to other optimiza-
tion techniques, such as gradient-based searches. Figure 2
presents the procedure to optimize the design variable values. To
begin, the engineer identifies which of the design variable values
should be optimized, and which should be fixed at constant values.
This permits optimization of only plant design variable values or
only controller design variable values if desired. The initial popu-
lation of designs is generated by augmenting the graph-based
model and replacing the controller design variable values. The
objective function is determined using the shooting method, i.e.,
simulating the dynamics for each design separately and calculat-
ing the objective function. When simulating a design, the MPC
algorithm is run within an inner, nested loop to determine control
inputs and plant dynamics. Once the simulation is complete, Jtot is
evaluated. The stoppage criteria are checked, and if not met, the
GA’s selection, crossover and mutation functions are run to gener-
ate a new population. This continues the outer loop optimization
process until the stoppage criteria are met, after which the opti-
mized design variable values are output.

Figures 3 and 4 present the optimization techniques used in this
article for the studies. Plant design optimization fixes the control-
ler design variable values, and optimizes only the plant design
variable values. Controller design optimization fixes the plant
design variable values, and optimizes only the controller design
variable values. Sequential CCD optimization is plant design opti-
mization followed by controller design optimization. Simultane-
ous CCD optimization does not fix any design variable values.
The plant and controller design variable values are optimized
simultaneously to identify new designs.

5 Hybrid Electric Vehicle Powertrain Model

This section presents a thermo-electromechanical model of a
candidate HEV powertrain with cooling. Note that the optimiza-
tion procedures of this article are not specific to this configuration,
and other powertrain layouts could be substituted for different
studies. To retain clarity for this article, the full description of the
model is provided in Supplemental Material on the ASME Digital
Collection for this article. The HEV powertrain model is built by
combining graph-based models of individual components. The
components are separated into four categories. The first category
contains components that operate primarily with electrical dynam-
ics. This includes batteries, buses, and power electronics such as
inverters, rectifiers, and DC–DC converters. The second category
contains components that operate primarily with mechanical
dynamics, including the motors and generators, pumps and fans,
planetary gears and transmissions, and engines. The third category
contains components with thermal dynamics, such as vapor com-
pression systems (VCS) and cooling loops. The fourth category
contains connector graphs that enable the combination of separate
component graphs, such as gearboxes, radiators, and virtual induc-
tors to maintain proper graph-based modeling format [51]. Multi-
ple versions of component graphs are used within the model (e.g.,
there are multiple DC/DC converters).

Figures 5 and 6 present the configuration of the full thermo-
electromechanical model of the power-split HEV powertrain with
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cooling. Component models are interconnected to produce the full
model, using a graphical composition method [57]. Graph inter-
connections are defined primarily using edge equivalencies: two
edges, each from different graphs, are defined to be combined.
The head and tail vertices of the edge from the first graph are
matched to the tail and head vertices, respectively, of the second
graph, defining vertex equivalencies. As the two combined edges
can have different parameters or be of different types, one graph’s
edge is defined to be the dominant one used in the combined
model. The Supplemental Material on the ASME Digital Collec-
tion lists all component graphs used and defines the edge equiva-
lencies and dominant edges to create the full HEV powertrain
model.

As shown in Figs. 5 and 6, the two main energy sources of the
powertrain are the battery pack and the engine. The battery pack
is connected to the high voltage bus in parallel. The high voltage
bus connects to an inverter to power and control the motor, as
well as a rectifier, which connects to the generator. The generator
and engine are coupled through the planetary gear, and the plane-
tary gear connects to the motor through the transmission. The
transmission ultimately powers the wheels and propels the vehicle
chassis, which are modeled together. The high voltage bus also
connects to a DC/DC converter to power the low voltage bus. The
low voltage bus is connected to six additional DC/DC converters,
which power the pumps, fans, and compressor for the VCS. The

battery, motor, generator, and each power electronics device have
their own defined temperature state. In addition, the planetary
gear has a temperature state to represent the thermal capacitance
of the gear and the surrounding elements.

The cooling system contains four loops. The power electronics,
which can have heat interactions between each other, is cooled by
the power electronics cooling loop. The transaxle cooling loop
rejects heat from the motor, generator, and planetary gear through
parallel channels. The vapor compression system cooling loop
cools the air passing through to the cabin, as well as the battery
cooling loop liquid. The battery is cooled by its cooling loop. Air
entering moves through a path within the vehicle, picking up heat
as it passes by each heat exchanger. The loops and air within the
paths are separated into multiple control volumes, meaning there
are temperature states for different sections of the coolant.

6 Problem Setup

This section defines the design optimization problem for the
HEV powertrain with cooling. Six plant design variables and three
controller design variables are selected. Using baseline design
variable values, the plant dynamics operating under the MPC
algorithm are validated.

6.1 Problem Formulation. Six plant design variables are
defined to optimize for the HEV powertrain system:

(1) hc;1 is size of the heat exchanger near the battery.
(2) hc;2 is size of the heat exchanger near the power electronics

box.
(3) hc;3 is size of the heat exchanger near the motor.
(4) hc;4 is size of the heat exchanger near the generator.
(5) hc;5 is size of the heat exchanger near the planetary gear

box.
(6) hc;6 is the size of the battery pack. To capture this, it

describes the number of battery cells in parallel within the
battery pack. This also scales the mass of the vehicle to
account for larger battery pack sizes.

Fig. 3 Plant design, controller design, and sequential CCD optimization. The superscripts * and ’ indi-
cate an optimally identified set of values, and a nominal set of values, respectively.

Fig. 4 Simultaneous CCD optimization. The superscript * indi-
cates an optimally identified set of values.

Fig. 2 Flowchart of the design optimization procedure using a genetic algorithm, with a black outline for
the GA and a light green outline for the simulation of the model and embedded MPC
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A detailed description of how these relate to Wc and W is pro-
vided in Supplemental Material on the ASME Digital Collection.
While the design framework is inclusive of topology optimization,
such as selection of air versus liquid cooling [53], it is not per-
formed in this work. As such, there are no discrete plant design
variables, and Uc and U are both equal to the identity matrix.
Equations (13) and (14) present the constraints for the plant design
variables.

hc ¼ 0:1; 0:1; 0:1; 0:1; 0:1; 1½ �T (13)

hc
¼ 100; 100; 100; 100; 100; 10½ �T (14)

Three controller design variables are defined, with discrete
options for each:

(1) /1 ¼ Dt is the time-step for the controller. It is constrained
to values of 0.5, 1, 2, and 3.

(2) /2 is the allowable perturbation of inputs from the last
input, e.g., /2 ¼ e. This controller design variable is con-
strained to 0.2, 0.25, 0.3, 0.35, and 0.4.

(3) /3 is the internal weight within Kx;c relating to velocity
tracking. It is constrained to the following values: 10, 25,
50, 100–1000 in increments of 100, 1500, 2000, 3000,
5000, 10,000, 50,000, and 100,000.

The values of the controller design variables were selected to
provide a grid to effectively explore the design space without
increasing computational requirements to intractable levels. The
design objective functions are the same as those presented in Eqs.
(4)–(8), with 0.5 used for wst, wsc, wen, and wsize. The normaliza-
tion terms are J st ¼ 107, J sc ¼ 1010, J en ¼ 107, and J size ¼ 101.
These values are selected from preliminary testing to normalize
the objective function values. Adjusting the weights or the nor-
malization terms will impact the final plant and controller
designed, though the methods presented remain applicable for all
cases, and previous studies explore the impact of weights on
designs [53]. State tracking error focuses on tracking vehicle
velocity with a weighting of 100. The battery surface temperature
is constrained between 20 �C and 40 �C. The motor and generator
temperatures are constrained between 0 �C and 80 �C, and the
power electronics temperatures are constrained between 10 �C and
110 �C. All temperature constraints have an internal weight of
1:4� 103. The battery state of charge (SOC) is constrained
between 0.3 and 0.7, with an internal weight of 1:4� 105. These
internal weights are selected such that 1 �C and 1% SOC viola-
tions give equal contributions to the state constraint violations
objective. Total energy utilization is determined from battery
edges 4–6 and 8, and engine edge 1, yielding the total energy used
while driving. For the sizing objective, wc factors the heat
exchanger sizes equally with internal values of 1, and an internal
value of 0 for the battery pack size.

Fig. 5 Electromechanical configuration of the HEV powertrain

Fig. 6 Thermal cooling system for the HEV
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The controller tracks the desired velocity with internal weight
/3, and contains the same constraints and internal weights as the
design optimization problem. The duty cycles for the power elec-
tronics make up a majority of the inputs for the system. The duty
cycle for the converter between the high and low voltage buses is
limited between 0.19 and 0.2, while the duty cycle input for the
converter connected to the VCS is limited between 0.09 and 0.1.
The duty cycle for converters powering fans and pumps are lim-
ited to 0.04–0.05 and 0–0.3, respectively. These input constraints
permit the components powered by these converters to operate in
their appropriate power ranges, drawn from preliminary analysis.
The inverter duty cycle, rectifier duty cycle, engine throttle, and
brake command are all limited between 0 and 1. The input to each
cooling system and air path is the mass flow rate, which is depend-
ent on the speed of the pump or fan connected to it. Model reduc-
tion is performed by setting entries of Cp less than 100 to be 0.
This minimum value is chosen in part due to its ability to yield a
stable model for all potential values of /1. The controller operates
with a horizon Np ¼ 4 steps. In addition, the first two inputs pro-
vided from the controller are used before calling the controller
again, with uprev ¼ ukþ1jk�1.

6.2 Model and Controller Validation. The model and cen-
tralized MPC algorithm are validated using a base set of plant and
controller design variables. The Urban Dynamometer Driving
Schedule (UDDS) drive cycle is used to define a desired vehicle
velocity. Ambient temperature profiles are at a constant 25 �C,
with all other external state profiles set to zero. In this example,
hc;1 ¼… ¼ hc;5 ¼ 100, hc;6 ¼ 3, /1 ¼ 1, /2 ¼ 0:25, and
/3 ¼ 100. The MATLAB ode23tb solver is used to solve the sys-
tem, with analytical solutions provided for the algebraic state
equations.

Figure 7 presents the state trajectories for the battery SOC,
vehicle velocity, and battery temperature. The planetary gear tem-
perature is also plotted as it has a low thermal capacitance, but
high power passing through it during operation, making tempera-
ture control difficult. The plant configuration and controller are
able to track the desired vehicle velocity, with an average error of
1.20 mph and standard deviation of 1.34 mph, with error defined

as the absolute value of the difference of the reference and actual.
State constraint violations are minimal, with maximum violations
of 0.0084 for battery SOC, 0 �C for battery temperature, and
0.14 �C for the planetary gear. The motor, generator, and power
electronics all remain within their temperature constraints.

7 Optimization Results

This section presents optimization results for the thermo-
electromechanical HEV powertrain model with MPC. The plant
and controller design variables are optimized for the UDDS drive
cycle. Three studies are performed using a GA to optimize, with a
population size of 10X the number of design variables being
adjusted. The first study identifies the six plant design variable
values for fixed controller design variable values. The second two
studies perform two versions of CCD, including sequential opti-
mization and simultaneous optimization of the plant and control-
ler design variables. Results are presented to show the
improvements in performance of the plant with controller.

Fig. 7 (a) Battery SOC, (b) velocity, (c) battery surface temperature, and (d) planetary gear temperature for model and
controller validation

Table 3 Design variables and objective function values for the
initial and plant-optimized systems

Initial design Optimized plant design

hc;1 22.5 38.2
hc;2 7.91 1.56
hc;3 73.2 0.639
hc;4 29.7 8.64
hc;5 16.9 13.7
hc;6 7.28 4.35
/1 1 1
/2 0.25 0.25
/3 100 100
Jst 13.1 10.7
Jsc 0 0
Jen 1.48 1.25
Jsize 15.0 6.28
Jtot 14.8 9.10
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7.1 Plant Optimization With the UDDS Drive Cycle. Opti-
mization using the UDDS drive cycle is first performed by opti-
mizing the plant design variables with fixed controller design
variables, using the values of /1 ¼ 1, /2 ¼ 0:25, and /3 ¼ 100.
Optimization is performed using the MATLAB ga function with a
population size of 60 and default settings. A computing cluster
node with 192 GB of memory and 36 cores is used to run the opti-
mization process in parallel. A total of 30 populations were gener-
ated, with 1800 function evaluations total. The total computing
runtime for the optimization algorithm was 15 days. The set of
design variables with the lowest total objective function value was
generated in the 11th population.

Table 3 presents the design variables and objective function
values for the designs with the lowest objective function values
from the first population (initial design) and the final population
(optimized plant design). Figure 8 presents the SOC, velocity, bat-
tery temperature, and planetary gear temperature state trajectories
for both of these system designs. The average velocity tracking
error is 1.41 mph for the initial design, with a standard deviation
of 1.70 mph. The average error and standard deviation are
1.26 mph and 1.54 mph, respectively, for the optimized plant
design. Neither design violates state constraints. There is a 58.2%
reduction in the size of the heat exchangers after optimizing for
the plant design variables. The total objective function is reduced
by 38.6%. The initial and optimized plant designs have different
pack sizes, with hc;6 as 7.28 and 4.35, respectively, through simi-
lar SOC trends. This is due to the hybrid nature of the powertrain,
with the engine providing more energy for powertrains with
smaller packs.

7.2 Plant and Controller Optimization. To quantify the
advantage conferred by control co-design, we compare the results
of plant-only optimization against sequential and simultaneous
optimization of the plant and controller design variables values.
Sequential optimization uses a GA to identify the controller
design variables values after identifying plant design variable val-
ues. The plant design variables are fixed, using the values identi-
fied from the optimized plant of Sec. 7.1. Simultaneous

optimization describes the study which identifies the values for
plant and controller design variables simultaneously using a GA.

For the sequential optimization study, an additional ten popula-
tions of size 30 were evaluated after the optimization of the plant
design variables, adding 300 to the earlier 1800 function evalua-
tions. The total number of function evaluations was 2100, and the
best controller design variables were generated in the third popu-
lation. For the simultaneous optimization study, the GA was run
for 20 generated populations of size 90, for a total of 1800 func-
tion evaluations.

Table 4 presents the design variables and objective function
values using sequential and simultaneous optimization of the plant
and controller design variables (sequential and simultaneous
CCD-MPC, respectively). Both reduce the total objective function
as compared to the system determined from solely optimizing the
plant design variables. However, the total objective function from
the simultaneous method is 20% lower as compared to the sequen-
tial method. This is primarily due to the reduction the simultane-
ously identified system provides in state tracking error and heat

Fig. 8 (a) Battery SOC, (b) velocity, (c) battery surface temperature, and (d) planetary gear temperature for the best
initial design and the optimized plant design

Table 4 Design variables and objective function values for the
sequential and simultaneous control co-design systems

Sequential CCD-MPC design Simultaneous CCD-MPC design

hc;1 38.2 20.2
hc;2 1.56 4.41
hc;3 0.639 11.6
hc;4 8.64 17.5
hc;5 13.7 2.89
hc;6 4.35 7.76
/1 1 0.5
/2 0.25 0.2
/3 1000 1000
Jst 7.69 5.58
Jsc 0 0.0752
Jen 1.24 1.32
Jsize 6.28 5.66
Jtot 7.60 6.32
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exchanger sizes. Unlike sequential design, simultaneous CCD is
able to optimally exploit the inherent design coupling between the
plant and the controller. Figure 9 presents the state trajectories for
the system identified using the simultaneous method as compared
to the system identified from optimizing the plant only. As com-
pared to the optimized plant design, the simultaneously identified
design reduces state tracking error as Fig. 9(b) shows, with an
average error of 0.99 mph and standard deviation of 1.05 mph.
However, Fig. 9(d) indicates that the number of state constraint
violations is increased in the planetary gear, reaching a maximum
of 7.52 �C over the constraint for a brief period of time. This is a
tradeoff that is determined by the relative weighting of the indi-
vidual objective functions. The increase in state constraint

violations is a relatively small increase in the total objective func-
tion, being 0.0376 after factoring in the weight wsc. However, by
doing so, the total size of the heat exchangers is reduced signifi-
cantly, dropping the contribution of this to the total objective
function by 0.31, an order of magnitude larger impact than the
constraint violation.

Figure 10(a) presents a spider plot of the weighted individual
objective functions (e.g., wstJst, wscJsc) for each of the system
designs. As shown, simultaneous optimization of the plant and
controller design variables yields the largest reduction in the
objective function, approaching closest to the unreachable utopia
point. Sequential optimization of the plant and controller design
variables does create improvements as compared to only

Fig. 9 (a) Battery SOC, (b) velocity, (c) battery surface temperature, and (d) planetary gear temperature for the opti-
mized plant design and the design identified from simultaneous control co-design

Fig. 10 Comparison of (a) the weighted individual objective function values and (b) the total
objective function values for each design identified using different optimization strategies
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optimization of the plant design, but not by as much as using
simultaneous methods. The trend is reflected in Fig. 10(b), which
plots the total objective function values (m ¼ 1).

Table 5 quantifies how plant optimization, sequential plant and
controller optimization, and simultaneous plant and controller
optimization reduce the objective functions as compared to the
best design from the initial population. Larger battery packs do
seem to require more energy than smaller battery packs, though
this is not validated in every case. This is because of the impact
other design variables and control objectives have on the energy
used. Simultaneous optimization reduces state tracking error by
57.4%, while sequential optimization and plant optimization
reduce it by 41.3% and 18.7%, respectively. Simultaneous optimi-
zation reduces the total heat exchanger size by 62.3%, slightly
more than the 58.2% from plant optimization. The tradeoffs made
are that simultaneous optimization has a small, nonzero increase
in state constraint violations (an infinite increase from 0), and a
smaller reduction in energy used. However, these tradeoffs allow
for a 57.3% reduction in the total objective function, as compared
to a 38.6% reduction found by only performing plant optimiza-
tion. This matches expectations: simultaneous optimization of
plant and controller design variables yield superior designs as
compared to only optimizing the plant, or optimizing the plant
and the controller in a sequential fashion. These results indicate
that this insight also applies to plants controlled by MPC
algorithms.

8 Conclusions

This article explores CCD for power and energy systems
with the integration of MPC. While the electrified mobility
literature contains studies on plant and controller optimization
for electromechanical powertrain dynamics, thermal dynamics
are generally excluded. As electrical component performance is
strongly coupled to temperature, this article expands on previ-
ous works by developing a novel thermo-electromechanical
HEV powertrain model suitable for CCD. To utilize a controller
recognized for handling thermal and electrical dynamics within
these systems, a MPC algorithm is used to control the system
dynamics.

Case studies optimize plant design variables, including heat
exchanger and battery sizes, as well as controller design variables
such as the MPC time-step, input limits, and MPC gains for track-
ing. Four individual objective functions, including heat exchanger
size, state tracking error, constraint violations, and energy used,
make up the total objective. Results show that optimization of the
plant with a baseline MPC algorithm reduces heat exchanger size
by 58.2% and state tracking error by 18.7% from an initial design.
Optimization of both plant and controller design variables, either
sequentially or simultaneously, further reduces the total objective.
Simultaneous optimization provides the greatest reductions, with
a 62.3% reduction in heat exchanger size and a 57.4% reduction
in state tracking error, with a tradeoff of minimally more state
constraint violations. The results indicate that embedding MPC
into CCD frameworks can yield significant improvements in elec-
trified vehicle performance. Future work will build on these
results and integrate additional controller features, MPC parame-
ters such as the prediction horizon, and plant dynamics into the
design optimization process.
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Nomenclature

A ¼ state matrix
B ¼ input matrix
c ¼ capacitance parameter
C ¼ storage capacitance
C ¼ storage capacitance matrix
C ¼ linearized capacitance matrix
D ¼ source input matrix
f ¼ nonlinear function
J ¼ objective function
J ¼ normalization parameter
m ¼ compromise programing integer

M ¼ incidence matrix
Nc ¼ number of continuous plant design variables
Ne ¼ number of edges
Np ¼ prediction horizon
Nt ¼ number of sink vertices
Nu ¼ number of inputs
Nv ¼ number of vertices
Nz ¼ number of discrete plant design variables
N/ ¼ number of controller design variables

r ¼ reference state vector
s ¼ slack variables vector
s ¼ slack decision variables
u ¼ input
u ¼ input vector
u ¼ input decision variables

uprev ¼ previous input
V ¼ matrix for how external states impact dynamics after

linearization
w ¼ weight

W ¼ vector of constant terms from linearization
wc ¼ internal component weights

x ¼ state
x ¼ state vector
x ¼ state decision variables

xa ¼ algebraic states
xd ¼ dynamic states

xhead ¼ head vertex state
xs ¼ external state

xtail ¼ tail vertex state
y ¼ power flow
y ¼ power flow vector

Table 5 Reductions in objective function values as compared to the best initial design

State tracking error (Jst) State constraint violations (Jsc) Energy used (Jen) Heat exchanger size (Jsize) Total objective (Jtot)

Optimized plant design 18.7% reduction 0.00% reduction 15.3% reduction 58.2% reduction 38.6% reduction
Sequential CCD-MPC 41.3% reduction 0.00% reduction 16.5% reduction 58.2% reduction 48.6% reduction
Simultaneous CCD-MPC 57.4% reduction 1 increase 11.0% reduction 62.3% reduction 57.3% reduction

Darker shading indicates a relatively greater reduction as compared to the other designs.
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ys ¼ source power flow vector
z ¼ discrete plant design variables
z ¼ upper bound on discrete plant design variables
z ¼ lower bound on discrete plant design variables
a ¼ edge parameter

Dt ¼ controller time-step
e ¼ allowable perturbation of inputs

hc ¼ continuous plant design variables
h�c ¼ optimally identified continuous plant design variable

values
hc ¼ upper bound on continuous plant design variables
hc ¼ lower bound on continuous plant design variables
Kp ¼ internal energy utilization weights
Ks ¼ internal constraint weights

Ks;c ¼ internal constraint weights (control)
Kx ¼ internal reference state weights

Kx;c ¼ internal reference states weights (control)
/ ¼ controller design variables
/ ¼ upper bound on controller design variables
/ ¼ lower bound on controller design variables

/� ¼ optimally identified controller design variable values
/0 ¼ nominal controller design variable values
U ¼ edge design matrix for discrete plant design variables

Uc ¼ capacitance design matrix for discrete plant design
variables

W ¼ edge design matrix for continuous plant design variables
Wc ¼ capacitance design matrix for continuous plant design

variables

Subscripts

en ¼ energy utilization
max ¼ maximum
min ¼ minimum

sc ¼ state constraint violations
size ¼ component sizing

st ¼ state tracking
tot ¼ total
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