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Abstract
This article introduces a computational design framework for obtaining
three-dimensional (3D) periodic elastoplastic architected materials with
enhanced performance, subject to uniaxial or shear strain. A nonlinear finite ele-
ment model accounting for plastic deformation is developed, where a Lagrange
multiplier approach is utilized to impose periodicity constraints. The analy-
sis assumes that the material obeys a von Mises plasticity model with linear
isotropic hardening. The finite element model is combined with a corresponding
path-dependent adjoint sensitivity formulation, which is derived analytically.
The optimization problem is parametrized using the solid isotropic material
penalization method. Designs are optimized for either end compliance or tough-
ness for a given prescribed displacement. Such a framework results in producing
materials with enhanced performance through much better utilization of an
elastoplastic material. Several 3D examples are used to demonstrate the effec-
tiveness of the mathematical framework.

K E Y W O R D S

adjoint sensitivity analysis, energy absorption, metamaterials, periodic boundary conditions, von
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1 INTRODUCTION

Recent advances in manufacturing technologies have created many possibilities in materials development.1 Architected
materials are cellular or composite materials possessing combinations of properties unattainable using monolithic mate-
rials. Materials with excellent structural properties (stiff, strong, tough, and yet lightweight) are needed for aerospace and
automotive industries.2 Hence, architected materials are of high interest to scientists and engineers. The performance
of such architected materials is dependent on the constituent materials, the volume fractions of the constituents, and
the architecture (design geometry).3-9 Nevertheless, most of the approaches used to develop these materials are based on
experiments, intuition, and/or bioinspiration.10,11
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Alternatively, topology optimization provides a scientific and systematic framework for generating new designs for
structural and material systems with optimized behavior.12-21 For example, Gao et al.22 developed an efficient isogeometric
topology optimization framework for the design of auxetic metamaterials. The effective properties of periodic architected
materials are usually estimated using one unit cell,1 where the homogenization method and periodic boundary conditions
are applied. Thus, it has become popular to combine the topology optimization framework with the homogenization
method to obtain material designs that exhibit optimized properties, such as maximum bulk modulus, maximum shear
modulus, or negative Poisson’s ratio.14,23-27

Lately, manufacturing-oriented topology optimization has gained an increasing interest in academia and industry,
owing to recent advances in additive manufacturing.28-30 Most works on architected materials primarily consider the
ideal state, where the architected materials are assumed to be defect-free.7,25,31 Recently, Pasini and Guest32 discussed the
possibility of incorporating imperfections of architected materials in topology optimization frameworks. Zhang et al.33

introduced a computationally efficient probabilistic method for deterministic structural topology optimization with many
load cases; such an approach can be extended to architected materials’ design.

While linear elastic topology optimization problems dominate the literature, some researchers have considered mate-
rial and geometric nonlinearities for structural applications. The sensitivity analyses with incorporated nonlinearities
were introduced by Ryu et al.,13 Tsay and Arora,34 Vidal et al.,35 Michaleris et al.,36 Behrou et al.,37 Alberdi et al.,38 and
others. Moreover, Swan and Kosaka39 proposed a framework for optimizing inelastic structures; their analysis included
a formulation for viscoelastic and elastoplastic structures. Researchers have also developed optimization frameworks for
creating optimized structures exhibiting viscoelastic creep deformation40 or structures with designs mitigating damage or
buckling by enforcing stress, damage, or buckling constraints.41-44 Others have considered the effect of geometric nonlin-
earities (finite elasticity) on the optimized structures and materials.45-50 It is not surprising that these works have inferred
that the adoption of nonlinear mechanics greatly impacts the optimized designs providing the loads are large enough to
induce nonlinear behavior.

A more customarily investigated material nonlinearity is elastoplasticity.28,51-55 One of the pioneering studies on
elastoplastic topology optimization is the work of Maute et al.56 The authors maximized the ductility of an elasto-
plastic structure based on the von Mises yield criterion. Nakshatrala and Tortorelli57 developed a topology opti-
mization framework for maximizing the energy dissipation under impact loading, where the structural material is
assumed to obey von Mises plasticity. Also, Zhang et al.58 proposed a structural topology optimization framework
for anisotropic plastic materials subjected to plane strain conditions. In a different work, a density-based framework
for energy-absorbing structures with pressure-dependent yielding is developed.59 Furthermore, Kato et al.60 intro-
duced a topology optimization framework for energy dissipation maximization of structural composites wherein they
accounted for elastoplastic deformation. Ivarsson et al.61 proposed and developed a gradient-based topology optimization
framework for impact mitigating structures, where the base material undergoes finite strain viscoplastic deformation.
Additionally, Ivarsson et al.62 presented a topology optimization framework for designing viscoplastic microstruc-
tures under large deformation, where the periodic boundary conditions are imposed using a master–slave approach
on the boundaries of the representative unit cell. Growing attention is also observed for developing topology opti-
mization frameworks for multimaterial structures.63-66 For instance, Alberdi and Khandelwal67 proposed a bimaterial
topology optimization framework, wherein viscoplastic and hyperelastic phases are combined to maximize energy
dissipation.

The lack of unit cell upscaling methods, precisely homogenization method based on asymptotic expansion,
when nonlinear mechanics are involved, forms a challenge for the evaluation of the effective properties, which
in turn makes the topology optimization of materially nonlinear systems more difficult than in the case of linear
elasticity.1,32 A few papers in the literature have considered topology optimization frameworks for effective mate-
rial properties that dictate the incorporation of material and geometric nonlinearities.1,68-72 For instance, the chal-
lenges with upscaling methods accompanying nonlinear properties encouraged Carstensen et al.73 to use structures
with finite periodicity to calculate optimized energy absorption. Although the elastoplastic topology optimization
literature has a few attempts tackling the creation of architected materials with maximum energy absorption,72

it still lacks frameworks considering other design objectives. Examples of other objective functions that are use-
ful for various engineering applications are strength2,74-76 and end compliance,77-79 where such objectives have not
been thoroughly studied within the scope of elastoplastic materials, especially for three-dimensional (3D) architected
materials.

In this article, we develop a topology optimization framework for two different objective functions (engineering
toughness and end compliance). The outputs of the framework are 3D architected cellular materials made from an



ABUEIDDA et al. 3

elastoplastic base material with linear isotropic hardening and von Mises yield criterion. The finite element (FE)
analysis and topology optimization framework are based on a 3D working domain, where periodic boundary condi-
tions have been imposed on a representative unit cell (RUC). The average stress is computed using the finite element
reaction forces to optimize the desired properties, where the unit cell is subject to uniaxial or shear strain, and the
periodicity is enforced using Lagrange multipliers. Also, attention is paid to study the effect of the initial design and
to impose microstructural connectivity through enforcing proper constraints. The sensitivities are obtained using a
path-dependent adjoint method.

Thus, there are several novel aspects of this article. We account for periodicity using the Lagrange multiplier method.
Another essential difference between this approach and the other work available in the literature is that we compute the
average stress using the nodal reactions to define the objective functions. Hence, the derivation of the adjoint sensitivi-
ties is different. Additionally, we have derived the adjoint sensitivities for two objective functions, and we compare the
responses obtained from the different objective functions. Finally, we consider 3D elastoplastic metamaterials.

The remainder of the article is laid out as follows: Section 2 provides an overview of the general topology optimiza-
tion problem. Section 3 discusses the nonlinear finite element analysis (FEA) and the elastoplasticity model adopted.
Section 4 talks about the discretization and parametrization using the solid isotropic material penalization (SIMP)
method.80,81 Also, Section 4 states the objective functions and scrutinizes the derivation of the equations used in the
sensitivity analysis. In Section 5, we present several 3D numerical examples along with analysis and discussion of the
results. We conclude the article in Section 6 by summarizing the significant results and stating possible directions for
future work.

2 PROBLEM OVERVIEW

In the present article, the topology optimization problem is addressed as a material distribution problem. The first step
is to define a working domain that is the physical region in which the material is distributed to obtain an optimized
response. Figure 1 demonstrates the generalized material distribution problem, where Λ denotes the working domain,
and Ω embodies the material domain. Mathematically, Λ is a bounded set in 3D space R3 containing all admissible
designs Ω. The material boundary Γ represents the surfaces on which prescribed displacements and tractions are applied,
respectively.

In topology optimization, the objective function G is maximized to identify an optimized material distribution Ω*. The
objective function depends on the displacement field u and how the material (Ω) is distributed within Λ. Mathematically,
the optimization problem can be written as follows

max
Ω⊂Λ

G(Ω)

subject to ∶ hi(Ω) ≤ 0, i = 1, 2, … ,ni

h̃j(Ω) = 0, j = 1, 2, … ,ne, (1)

where {hi} and {h̃j} represent the sets of inequality and equality constraints, respectively. Also, ni and ne denote the
number of inequality and equality constraints, respectively.

F I G U R E 1 The material distribution problem with prescribed displacement and
traction boundary conditions
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The governing equations describing the mechanics of structures or materials guide the optimization search. The
equilibrium equation in the absence of inertial and body forces is given by

∇ ⋅ 𝛔 = 0 in Ω, (2)

where 𝛔 is the Cauchy stress tensor, while 𝛁 ⋅ is the divergence operator. Under the assumption of small deformations,
the kinematic equation is expressed as

𝛆 = 1
2
(
∇u + (∇u)T) , (3)

where 𝛆 is the infinitesimal strain tensor, 𝛁 is the gradient operator, and (•)T is the transpose operator. Periodic boundary
conditions are imposed on the RUC for better representation of periodic medium.72,82-84 The boundary Γ is divided into
opposing regions Γ+ and Γ− such that Γ+ ∩ Γ− and Γ = Γ+ +Γ−, where x+ ∈Γ+ and x− ∈Γ−. The periodicity constraints
imposed on the RUC can be expressed as:

u(x+) − u(x−) = 𝛆 ⋅ l on Γ, (4)

where 𝛆 is the macroscopic strain tensor driving the deformation in the boundary value problem (BVP), and l = x+ − x−.

3 ELASTOPLASTIC FINITE ELEMENT ANALYSIS

In this section, we briefly mention the main finite element equations.85,86 Consider a solid body exhibiting an elastoplastic
response and occupying the material domain Ω, as depicted in Figure 1. At each material point in Ω, the stress tensor 𝛔 is
defined by the material constitutive model discussed later. The weak form of the BVP in the absence of inertial and body
forces is expressed as

∫
Ω

𝛔 ∶ ∇𝛿udv − ∫
Γ

t ⋅ 𝛿uds = 0, (5)

where 𝛿u is the arbitrary virtual displacement, and t denotes the traction. The global residual vector R1 is
given by

R1(u) = Fint − P. (6)

where Fint is the internal force vector, and P is the external force vector. The global force vectors (in the absence of body
forces) are given by

Fint =
Nele

𝓐
e=1

Fe
int where Fe

int = ∫
Ωe

BT𝛔dv,

P =
Nele

𝓐
e=1

Pe where Pe = ∫
Γe

NTtds, (7)

where 𝓐 is the FE assembly operator, the superscript e denotes the element, Nele denotes the total number of elements,
N denotes the shape function matrix, and B represents the shape function derivative matrix.

In the present article, we implement a displacement-control method, where the periodic boundary conditions are
directly applied to the degrees of freedom on the discretized Γ, that is, they are imposed in a pointwise fashion. The
discrete form of the periodic constraints, shown in Equation (4), is written as

Au − l �̂� = 0, (8)

where for the 3D case, �̂� =
[
𝜀11 𝜀22 𝜀33 2𝜀12 2𝜀23 2𝜀31

]T . The matrix l contains the information about the length
of the unit cell. In this article, we consider cubic unit cells, that is, l1 = l2 = l3 = l. The matrix A relates
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degrees of freedom on the opposing regions Γ+ and Γ−. For an arbitrary pair j of boundary nodes, Equation (8) is
expressed as:

Ajuj − lj�̂� =
⎡⎢⎢⎢⎣

1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u+
j

v+j
w+

j

u−
j

v−j
w−

j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−
⎡⎢⎢⎢⎣

l 0 0 l∕2 0 l∕2
0 l 0 l∕2 l∕2 0
0 0 l 0 l∕2 l∕2

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜀11

𝜀22

𝜀33

2𝜀12

2𝜀23

2𝜀13

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

0
0
0

⎤⎥⎥⎥⎦ . (9)

The periodicity constraints are enforced using Lagrange multipliers 𝛉. The residuals R are expressed as

R(u, 𝛉) =
[

R1(u, 𝛉)
R2(u)

]
=

[
Fint(u) − AT𝛉

Au − l �̂�

]
=

[
0
0

]
. (10)

Equation (10) is solved using the Newton–Raphson method utilizing the Jacobian matrix J

K =
Nele

𝓐
e=1

ek with ek = ∫
Ωe

BTCTBdv,

J =

[
𝜕R1∕𝜕u 𝜕R1∕𝜕𝛉
𝜕R2∕𝜕u 𝜕R2∕𝜕𝛉

]
=

[
K −AT

A 0

]
,

J

[
du
d𝛉

]
+

[
0
−l

]
�̂� =

[
0
0

]
, (11)

where K is the tangent stiffness matrix, ek is the element stiffness matrix, and CT is the algorithmic consistent tangent
modulus coming from the linearization of the constitutive model adopted.

Next, we provide a short description of the constitutive relations (elastoplasticity) and radial return mapping,87 used
to ensure that the yield condition is satisfied at each load increment. The small strain plasticity theory allows us to
decompose the total strain tensor 𝛆 additively

𝛆 = 𝛆el + 𝛆p, (12)

where the superscripts el and p denote the elastic and plastic parts of the strain tensor, respectively. The Cauchy stress
tensor 𝛔 is defined by

𝛔 = C
el ∶ 𝛆el, C

el ≔ 𝜅1⊗ 1 + 2𝜇
(

I − 1
3

1⊗ 1
)
, (13)

where Cel is the isotropic elasticity tensor, 𝜅 is the bulk modulus, 𝜇 is the shear modulus, 1 is the second-order identity
tensor, and I is a fourth-order tensor whose components are defined as Iijkl = 1

2
(𝛿ik𝛿jl + 𝛿jk𝛿il) where 𝛿 is the Kronecker

delta. Here, we use the von Mises yield condition 𝜓 , which is widely used to describe metal plasticity.

𝜓(𝛔, 𝛼) = ||s|| −√
2∕3(𝜎y + K𝛼) = 0, (14)
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where 𝛼 is the internal plastic variable known as equivalent plastic strain, K denotes the linear isotropic hardening
modulus, 𝜎y is the initial yield stress, and s denotes the deviatoric stress.

The evolutions of the plastic strain �̇�p and equivalent plastic strain �̇� are defined by the associative flow rules

�̇�p = 𝛾
𝜕𝜓

𝜕𝛔
= 𝛾n, n ≔ s||s|| , �̇� = 𝛾

𝜕𝜓

𝜕𝛔
=
√

2
3
𝛾, (15)

where 𝛾 is the consistency parameter, and n denotes the normal to the yield surface. The Karush–Kuhn–Tucker (KKT)
conditions and consistency condition are needed to complete the definition of the constitutive model

𝜓(𝛔, 𝛼) ≤ 0, 𝛾𝜓(𝛔, 𝛼) = 0, 𝛾 ≥ 0, (16)

𝛾�̇�(𝛔, 𝛼) = 0, (17)

where Equation (16) summarizes the KKT conditions, and Equation (17) represents the consistency condition. To avoid
any confusion, note that the KKT conditions defined in Equation (16) are different from the KKT conditions used for the
convergence criteria for the numerical optimization problem.

The radial return mapping algorithm, originally proposed by Wilkins,88 is adopted here. Given the state at an integra-
tion point: 𝛆n+ 1 at the current time step n+ 1, and 𝛆p

n and 𝛼n at the previous step n, one can find 𝛆p
n+1, 𝛼n+ 1, and CTn+1 .

87

We start with computing an elastic trial stress tensor strial

en+1 = 𝛆n+1 −
1
3
(trace[𝛆n+1]) 1

strial
n+1 = 2𝜇

(
en+1 − ep

n
)

(18)

where e is the deviatoric strain tensor. Then, we check the yield condition

𝜓 trial
n+1 = ||strial

n+1|| −√
2∕3(𝜎y + K𝛼). (19)

If 𝜓 trial
n+1 ≤ 0, we set (•)n+1 = (•)trial

n+1 and CT =Cel. Otherwise, we proceed with the computations of nn+ 1, 𝛼n+ 1, and
Δ𝛾n+ 1

nn+1 =
strial

n+1||strial
n+1|| , Δ𝛾n+1 =

𝜓 trial
n+1

2
(
𝜇 + K

3

) , 𝛼n+1 = 𝛼n +
√

2∕3Δ𝛾n+1. (20)

Next, we update the plastic strain and stress

ep
n+1 = ep

n + Δ𝛾n+1 nn+1

𝛔n+1 = 𝜅 trace[𝛆n+1]1 + strial
n+1 − 2𝜇Δ𝛾n+1 nn+1. (21)

The consistent tangent modulus is obtained using

CT = 𝜅1⊗ 1 + 2𝜇𝜒n+1

(
I − 1

3
1⊗ 1

)
− 2𝜇𝜒n+1 nn+1 ⊗ nn+1

𝜒n+1 ≔ 1 − 2𝜇Δ𝛾n+1||strial
n+1|| , 𝜒n+1 ≔ 1

1 + K
3𝜇

− (1 − 𝜒n+1). (22)

4 OPTIMIZATION FRAMEWORK

4.1 Design parametrization

The optimization problem can be solved by identifying elements that should be contained within the material region, or
it can be solved by directly optimizing the location of the material boundary Γ.

12,89,90 Here, we adopt the former approach
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and use the SIMP method.80,81 Based on this approach, the finite elements in the working domain Λ are interpolated via
a material density vector 𝝓 with components 𝜙∈ [0, 1], where 𝜙 = 0 indicates a void element, and 𝜙 = 1 corresponds
to a solid element. Penalty factors are introduced to steer the solution to a binary (0, 1) design and avoid elements with
intermediate densities. Three penalty factors (p1, p2, p3) are required to interpolate three material parameters for an
element e, namely Young’s modulus Ee, initial yield stress 𝜎ye , and hardening modulus Ke, respectively.

Ee = Emin + (E − Emin)𝜙
p1
e ,

𝜎ye = 𝜎ymin + (𝜎y − 𝜎ymin)𝜙
p2
e ,

Ke = Kmin + (K − Kmin)𝜙
p3
e , (23)

where E, 𝜎y, and K denote the material parameters for a solid element (𝜙 = 1). On the other hand, Emin = 10−6E, 𝜎ymin =
10−6𝜎y, and Kmin = 10−6K are the material parameters for a void element (𝜙≈ 0), and they are assigned values slightly
higher than zero to avoid singularity of the stiffness matrix. A continuation scheme is used to gradually increase the
penalization factors.

The element-based formulation, in combination with first-order elements, suffers from numerical instabilities such
as checkerboarding and mesh-dependence.91,92 The density filtering technique, introduced by Bruns et al.,49 is utilized
to address such numerical instabilities. Following this approach, the pseudo-densities 𝝃, which are the design variables
directly manipulated by the optimizer, are related to the physical (filtered) densities𝝓, used to construct the global stiffness
matrix via Equation (23):

𝝓 = W𝝃

qij = max(0, rmin − ||Xi − Xj||)
qij =

1∑Nrmin
k=1 qk

qij (24)

where qij is the weighting coefficient, qij is the normalized weight coefficient composing the normalized filter matrix
W, X are the coordinates of the element centroid, and rmin is the filter radius. Since the mesh of the working domain is
fixed throughout the optimization, the normalized filter matrix W is calculated once at the beginning of the optimization
problem and then stored to be used during each optimization iteration.

4.2 Objective functions

To quantify the effective properties of materials, usually one applies a known average strain with periodic boundary
conditions, and then the average stress is calculated using the mean stress theorem:

𝜎ij =
1
V ∫Ω

𝜎ijdV. (25)

Also, the average stress can be evaluated from the nodal reactions by employing the divergence theorem.82,83,93 The
primary objective of the present article is to develop a framework to maximize either toughness or end compliance of
cellular materials for a given prescribed displacement (or applied average strain). The above two objective functions are
maximized under two scenarios: uniaxial (𝜀11 ≠ 0 and other components are zero) and pure shear (𝜀12 ≠ 0 and other com-
ponents are zero) strains. Figure 2 portrays the strains for these two different scenarios. We start by stating the objective
functions. The first objective function considered here is the end compliance. When the end compliance is maximized
for a given prescribed displacement, the magnitude of the load that corresponds to the given prescribed displacement is
maximized. Assuming the analysis is solved in M increments, the end compliance is mathematically expressed as:

Gend compliance = PT
M ⋅ uM . (26)

Note that the problem is displacement-controlled, and it has no external forces directly applied to the RUC. Thus, the
external force vector P is composed of reaction forces due to the prescribed displacement and periodicity constraints, and
it is zero for the remaining degrees of freedom.
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(C)

(A)

(B)

1

2

12

3

F I G U R E 2 (A) Illustration of the working domain.
Demonstration of the strains considered in this study: (B) uniaxial
compression and (C) pure shear. Note that (B) and (C) are in the
x1x2-plane

The second considered objective function is toughness, defined here as the energy absorbed by the material at a pre-
determined strain. The toughness is estimated using the rectangular rule, a simple numerical integration technique, as
follows:

Toughness ≈
M∑

n=1
Fn Δdn, (27)

where d represents the prescribed displacement at step n, and M is the total number of increments. Since the pre-
scribed displacement is incrementally applied with a constant displacement increment, the displacement increment Δdn
is dropped from the definition of the objective function G and its gradients, that is,

Gtoughness =
M∑

n=1
Fn, (28)

where F at step n is written as:

Fn = LTPn, (29)

where L is a vector defined to specify the degrees of freedom used in the computation of Fn. In the case of uniaxial strain
(see Figure 2(B)), Li is expressed as:

Li =
⎧⎪⎨⎪⎩
−1 i ∈ x+1 and in x1-direction
+1 i ∈ x−1 and in x1-direction
0 otherwise

, (30)

where i is the degree of freedom. In the case of pure shear (see Figure 2(C)), Li is defined as:

Li =
⎧⎪⎨⎪⎩
+1 i ∈ x+1 and in x2-direction or i ∈ x+2 and in x1-direction
−1 i ∈ x−1 and in x2-direction or i ∈ x−2 and in x1-direction
0 otherwise

. (31)

4.3 Problem formulation

Here, we seek optimized topologies yielding cellular materials possessing enhanced performance, given a certain mass
constraint. Also, an elastic compliance constraint is enforced to maintain the integrity of the design and ensure some req-
uisite stiffness with respect to the applied load. Since the problem is a displacement-controlled one, a lower bound on the
minimum allowable compliance is imposed. However, in the case of a force-controlled problem, stiffness constraints are
enforced by placing an upper bound on the maximum allowable compliance. Note that the elastic compliance constraints
are computed for three axial strain cases, different from the applied loading used to calculate the objective function.
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Also, note that the three axial strains used for the constraints are small enough not to induce any plastic deformation.
Mathematically, the optimization problem is expressed as:

max
Ω⊂Δ

G

subject to ∶ h1 = Cmin − PT
x1

u ≤ 0
h2 = Cmin − PT

x2
u ≤ 0

h3 = Cmin − PT
x3

u ≤ 0
h4 = V(𝝃) − Vf ≤ 0, (32)

where Cmin is the minimum allowable compliance, and Px1 , Px2 , and Px3 are the consistent force vectors when
the displacements are applied in the direction of the x1-, x2-, and x3-axes, respectively. The first three constraints
(compliance constraints) are imposed while the working domain is still in the linear elastic region, that is, a small
displacement is prescribed, so there is no plastic deformation induced in the working domains. The volume frac-
tion is denoted by V(𝝃) which is not allowed to have a value exceeding V f . The volume fraction of a design is
calculated as:

V(𝝃) =
𝝓T v̂
Vtotal

, (33)

where V total is the total volume of the working domain Λ, and v̂ denotes the vector of element volumes.

4.4 Sensitivity analysis

Since the number of design variables in the topology optimization problem is large, the adjoint method36,94 is
employed to calculate the sensitivities. We start with a generic objective function G(ỹM , … , ỹ1, vM , … , v1,𝝓) which is a
function of the element density vector, unknown vector ỹn =

[un
f Pn

a 𝛉n], and auxiliary state variables vn. For the
sake of brevity, we define variable yn as combination of the unknown displacements (displacements at free degrees of
freedom un

f ) and unknown forces (forces corresponding to the degrees of freedom with prescribed displacements Pn
a),

that is, yn =
[un

f Pn
a
]
. The subscripts f and a correspond to degrees of freedom associated with free and prescribed

displacements, respectively. The augmented objective functional F̂ is expressed as

F̂(𝝓) = G −
M∑

n=1
𝝀nT Rn(ỹn, ỹn−1, vn, vn−1,𝝓

)
−

M∑
n=1

𝝎nT Hn(ỹn, ỹn−1, vn, vn−1,𝝓
)

(34)

where 𝝀n and 𝝎n are arbitrary Lagrange multipliers corresponding to the residuals Rn and Hn, respectively. The residuals
have the property that Rn = 0 and Hn = 0; thus, the original and augmented objective functions are equal, and therefore
their sensitivities are equal everywhere within the working domain, that is, dG∕d𝝓 = dF̂∕d𝝓. The derivative dF̂∕d𝝓, using the
chain rule and reordering the terms, can be written as follows

dF̂
d𝝓

= dG
d𝝓

−
M∑

n=1
𝝀nT dRn

d𝝓
−

M∑
n=1

𝝎nT dHn

d𝝓

= 𝜕G
𝜕𝝓

−
M∑

n=1

(
𝝀nT 𝜕Rn

𝜕𝝓
+ 𝝎nT 𝜕Hn

𝜕𝝓

)
+

(
𝜕G
𝜕ỹM − 𝝀MT 𝜕RM

𝜕ỹM − 𝝎MT 𝜕HM

𝜕ỹM

)
dỹM

d𝝓
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+
M−1∑
n=1

(
𝜕G
𝜕ỹn − 𝝀n+1T 𝜕Rn+1

𝜕ỹn − 𝝎n+1T 𝜕Hn+1

𝜕ỹn − 𝝀nT 𝜕Rn

𝜕ỹn − 𝝎nT 𝜕Hn

𝜕ỹn

)
dỹn

d𝝓

+
(
𝜕G
𝜕vM − 𝝀MT 𝜕RM

𝜕vM − 𝝎MT 𝜕HM

𝜕vM

)
dvM

d𝝓

+
M−1∑
n=1

(
𝜕G
𝜕vn − 𝝀n+1T 𝜕Rn+1

𝜕vn − 𝝎n+1T 𝜕Hn+1

𝜕vn − 𝝀nT 𝜕Rn

𝜕vn − 𝝎nT 𝜕Hn

𝜕vn

)
dvn

d𝝓
. (35)

The calculation of the implicit derivatives dyn∕d𝝓 and dvn∕d𝝓 can be circumvented by choosing the Lagrange multipliers
𝝀n and 𝝎n such that all terms containing dỹn∕d𝝓 and dvn∕d𝝓 sum to zero. Having said that, the Lagrange multipliers are
computed in reverse chronological order, starting from the last step and ending with the first step.

Mth step∶
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜕G
𝜕ỹM − 𝝀MT 𝜕RM

𝜕ỹM − 𝝎MT 𝜕HM

𝜕ỹM = 0
𝜕G
𝜕vM − 𝝀MT 𝜕RM

𝜕vM − 𝝎MT 𝜕HM

𝜕vM = 0

(36)
nth step, n=M-1,… ,1

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜕G
𝜕ỹn − 𝝀n+1T 𝜕Rn+1

𝜕ỹn − 𝝎n+1T 𝜕Hn+1

𝜕ỹn − 𝝀nT 𝜕Rn

𝜕ỹn − 𝝎nT 𝜕Hn

𝜕ỹn = 0
𝜕G
𝜕vn − 𝝀n+1T 𝜕Rn+1

𝜕vn − 𝝎n+1T 𝜕Hn+1

𝜕vn − 𝝀nT 𝜕Rn

𝜕vn − 𝝎nT 𝜕Hn

𝜕vn = 0

Hence, the derivative dF̂∕d𝝓 reduces to

dG
d𝝓

= dF̂
d𝝓

= 𝜕G
𝜕𝝓

−
M∑

n=1

(
𝝀nT 𝜕Rn

𝜕𝝓
+ 𝝎nT 𝜕Hn

𝜕𝝓

)
, (37)

where the Lagrange multipliers 𝝀n and 𝝎n are calculated using Equation (36). Note that density filtering (Equation 24) is
employed to resolve numerical instabilities as discussed in Section 4.1. Obtaining the derivative with respect to the design
variable 𝝃 is trivial, and it only requires a straightforward implementation of the chain rule

dG
d𝝃

= dG
d𝝓

d𝝓
d𝝃

= dG
d𝝓

W. (38)

In the context of the adopted constitutive model, the global equilibrium residual vector Rn
1 is expressed as

Rn
1 =

Nele

𝓐
e=1

( ∑
Gauss points r

Rn
r

)
,

Rn
r = BT𝛔TwJ − NTbnwJ − NTtnwj, (39)

where N and B are the usual shape function matrix and shape function derivative matrix, respectively. Also, w denotes
the weighting function while J and j denote the volume and area metrics. In the present work, we assume there is no body
force, that is, bn = 0, and each element has eight Gauss points (r = 1, … , 8). The auxiliary variable state vn is defined at
each Gauss point as follows

vn = [𝛔n] elastic loading or unloading,

vn =

⎡⎢⎢⎢⎢⎢⎣

𝛆pn

𝛼n

𝛔n

𝛾n

⎤⎥⎥⎥⎥⎥⎦
plastic loading. (40)
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The residual Hn is defined at each Gauss point. In the case of elastic loading or unloading, Hn is

Hn = 𝛔n−1 + Cel (Bun − Bun−1) − 𝛔n = 0, (41)

where Cel is the elastic constitutive matrix. In the case of plastic loading, Hn is

Hn =

⎡⎢⎢⎢⎢⎢⎣

Hn
𝛆p

Hn
𝛼

Hn
𝛔

Hn
𝛾

⎤⎥⎥⎥⎥⎥⎦
= 0, (42)

where

Hn
𝛆p = 𝛆pn−1 +

(
𝛾n − 𝛾n−1)n − 𝛆pn

,

Hn
𝛼 = 𝛼n−1 +

√
2∕3

(
𝛾n − 𝛾n−1) − 𝛼n,

Hn
𝛔 = 𝛔n−1 + Cel(Bun − Bun−1 − 𝛆pn + 𝛆pn−1) − 𝛔n,

Hn
𝛾 = ||s|| −√

2∕3 (𝜎ye + Ke 𝛼). (43)

Using Equations (26) and (28), the explicit derivatives of G required in the optimization procedure are evaluated as

𝜕G
𝜕𝝓

= 0,

𝜕G
𝜕vn = 0. (44)

Next, we define the explicit derivative of G with respect to ỹn =
[
yn 𝛉n] in the case of toughness and end compliance.

Starting with toughness, the components of 𝜕Gtoughness

𝜕ỹn are expressed as

𝜕Gtoughness

𝜕𝛉n = 0,

𝜕Gtoughness

𝜕yn =
M∑

n=1

𝜕Fn

𝜕yn ,
𝜕Fn

𝜕yn = LT 𝜕Pn

𝜕yn ,

𝜕Pn

𝜕yn =

[
0ff 0fa

0af Iaa

]
, (45)

where I is the identity matrix. In the case of maximizing the end compliance, the derivative of G with respect to ỹn is
written as

𝜕Gend compliance

𝜕𝛉n = 0 for n ≤ M,

𝜕Gend compliance

𝜕yn = 0 for n ≤ M − 1,
𝜕Gend compliance

𝜕yM =

[
0f

uT
a

]
M

. (46)

Given Equations (39) and (40), the explicit derivatives of Rn with respect to 𝝓, ỹn, ỹn−1, vn, and vn− 1 are obtained from
the equation below

𝜕Rn

𝜕𝝓
= 0, 𝜕Rn

𝜕ỹn−1 = 0,

𝜕Rn

𝜕vn−1 = 0, 𝜕Rn

𝜕vn = [0 0 BTwJ 0] ,
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𝜕Rn

𝜕yn =

[
0ff 0fa

0af −Iaa

]
,
𝜕Rn

𝜕ỹn =

[
𝜕Rn

𝜕yn −AT

A 0

]
. (47)

The explicit derivative of Hn with respect to 𝝓 is expressed as

𝜕Hn

𝜕𝝓
=
[
𝜕Cel

𝜕𝝓

(
Bun − Bun−1)] elastic loading,

𝜕Hn

𝜕𝝓
=

⎡⎢⎢⎢⎢⎢⎣

0
0

𝜕Cel

𝜕𝝓

(
Bun − Bun−1 − 𝛆pn + 𝛆pn−1)
−
√

2∕3

(
𝜕𝜎ye
𝜕𝝓

+ 𝜕Ke
𝜕𝝓
𝛼
)

⎤⎥⎥⎥⎥⎥⎦
plastic loading, (48)

where

𝜕Cel

𝜕𝝓
= p1(E − Emin)𝜙

(p1−1)
e Co,

𝜕𝜎ye

𝜕𝝓
= p2(𝜎y − 𝜎ymin)𝜙

(p2−1)
e ,

𝜕Ke

𝜕𝝓
= p3(K − Kmin)𝜙

(p3−1)
e , (49)

where Co is the elasticity tensor evaluated with 𝜙e = 1(Ee = E). The explicit derivatives of Hn with respect to ỹn and ỹn−1

are

𝜕Hn

𝜕𝛉n = 𝜕Hn

𝜕𝛉n−1 = 0, 𝜕Hn

𝜕yn =

⎡⎢⎢⎢⎢⎢⎣

0
0
𝜕Hn

𝛔
𝜕yn

0

⎤⎥⎥⎥⎥⎥⎦
,

𝜕Hn

𝜕yn−1 =

⎡⎢⎢⎢⎢⎢⎣

0
0
𝜕Hn

𝛔
𝜕yn−1

0

⎤⎥⎥⎥⎥⎥⎦
, (50)

where 𝜕Hn
𝛔

𝜕yn = CelB and 𝜕Hn
𝛔

𝜕yn−1 = −CelB at free degrees of freedom, and 𝜕Hn
𝛔

𝜕yn = 𝜕Hn
𝛔

𝜕yn−1 = 0 at prescribed degrees of freedom. In

the case of elastic loading, 𝜕Hn

𝜕yn and 𝜕Hn

𝜕yn−1 are reduced to

𝜕Hn

𝜕yn−1 =
𝜕Hn

𝛔
𝜕yn−1 ,

𝜕Hn

𝜕yn =
𝜕Hn

𝛔
𝜕yn . (51)

The derivative of Hn with respect to vn− 1 is

𝜕Hn

𝜕vn−1 = I elastic loading,

𝜕Hn

𝜕vn−1 =

⎡⎢⎢⎢⎢⎢⎣

I 0 0 −n
0 1 0 −

√
2∕3

Cel 0 I 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
plastic loading. (52)

Finally, the derivative of Hn with respect to vn is

𝜕Hn

𝜕vn = −I elastic loading,
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𝜕Hn

𝜕vn =

⎡⎢⎢⎢⎢⎢⎣

−I 0
(
𝛾n − 𝛾n−1) 𝜕n

𝜕𝛔 n
0 −1 0

√
2∕3

−Cel 0 −I 0
0 −

√
2∕3Ke n 0

⎤⎥⎥⎥⎥⎥⎦
plastic loading, (53)

where

𝜕n
𝜕𝛔

= 1||s|| (I − 1
3

1⊗ 1 − n⊗ n
)
. (54)

Below is a summary for the mathematical framework used here

dG
d𝝃

= dG
d𝝓

d𝝓
d𝝃

= dG
d𝝓

W,

dG
d𝝓

= dF̂
d𝝓

= −
M∑

n=1

(
𝝎nT 𝜕Hn

𝜕𝝓

)
, (55)

where 𝝎n in the case of toughness maximization is calculated as
Mth step∶

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(
𝜕RM

𝜕ỹM − 𝜕RM

𝜕vM

(
𝜕HM

𝜕vM

)−1
𝜕HM

𝜕ỹM

)T

𝜆M = 𝜕FM

𝜕ỹM

𝝎M = −
(
𝜕HM

𝜕vM

)−T(
𝜕RM

𝜕vM

)T
𝜆M

nth step, n=M-1,… ,1
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(

𝜕Rn

𝜕ỹn − 𝜕Rn

𝜕vn

(
𝜕Hn

𝜕vn

)−1
𝜕Hn

𝜕ỹn

)T

𝜆n = 𝜕Fn
𝜕ỹn −

(
𝜕Hn+1

𝜕ỹn − 𝜕Hn+1

𝜕vn

(
𝜕Hn

𝜕vn

)−1
𝜕Hn

𝜕ỹn

)T

𝝎n+1

𝝎n = −
(
𝜕Hn

𝜕vn

)−T
((

𝜕Rn

𝜕vn

)T
𝜆n +

(
𝜕Hn+1

𝜕vn

)T
𝝎n+1

) , (56)

while in the case of end compliance maximization, 𝝎n is evaluated using

Mth step∶
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(

𝜕RM

𝜕ỹM − 𝜕RM

𝜕vM

(
𝜕HM

𝜕vM

)−1
𝜕HM

𝜕ỹM

)T

𝜆M = 𝜕Gend compliance

𝜕ỹM

𝝎M = −
(
𝜕HM

𝜕vM

)−T(
𝜕RM

𝜕vM

)T
𝜆M

nth step,n=M-1,… ,1
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(

𝜕Rn

𝜕ỹn − 𝜕Rn

𝜕vn

(
𝜕Hn

𝜕vn

)−1
𝜕Hn

𝜕ỹn

)T

𝜆n = −
(
𝜕Hn+1

𝜕ỹn − 𝜕Hn+1

𝜕vn

(
𝜕Hn

𝜕vn

)−1
𝜕Hn

𝜕ỹn

)T

𝝎n+1

𝝎n = −
(
𝜕Hn

𝜕vn

)−T
((

𝜕Rn

𝜕vn

)T
𝜆n +

(
𝜕Hn+1

𝜕vn

)T
𝝎n+1

) . (57)

The required matrices are provided in Equations (44)–(54). The sensitivities of the volume and elastic compliance
constraints are straightforward and available in many papers, and we do not include them for the sake of conciseness.

Error-free implementation of the sensitivities discussed above is not a trivial task. We ensure that the analyti-
cal sensitivities of the objective function and constraints are correctly implemented by comparing them with those
obtained from the central finite difference (CFD) method. A cube with 64 elements, where all elements possess a uni-
form density (0.5, which is equivalent to the volume constraint used in the following section), is considered as the
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(A) (B)

F I G U R E 3 Sensitivity comparison results: (A) Toughness (unit: kJ/m3), (B) end compliance (unit: N⋅mm). CFD method refers to the
central finite difference method. The length of the cube unit cell is 10 mm

verification model. A uniaxial compressive strain (2% applied strain, which is large enough to induce plastic defor-
mation given the low densities of the elements) is applied. Figure 3 shows two examples of sensitivity verification
analysis.

5 RESULTS AND DISCUSSION

In this section, the elastoplastic optimization procedure described above is implemented to maximize either tough-
ness or end compliance, where the framework is demonstrated on 3D example problems. The elements chosen
for the analysis are eight-node hexahedral elements, where an eight-point Gaussian quadrature rule is used for
numerical integration. The working domain Λ is a bulk cube (see Figure 4(A)). We start by running a finite ele-
ment analysis for the working domain under a specific applied strain to ensure that its response is insensitive to
the number of elements used in the analysis. The mesh sensitivity study is shown in Figure 4(B), where a uni-
axial strain of 5% is applied for the three meshes of Λ. Figure 4(B) indicates that 8000 elements are acceptable
given the high computational cost of the optimization procedure; hence, this number is chosen for the optimization
problem.

The optimization algorithm is implemented in MATLAB. The optimization problems, along with the finite element
analyses, have been run on a parallel cluster, using 16 Skylake cores and 128 GB RAM. The optimization procedure is
performed using one unit cell, called representative unit cell (RUC), without imposing symmetry constraints95-97 within
the unit cell. Additionally, buckling and damage are key physical considerations for the design of cellular materials
for many engineering applications. In this study, the effects of damage and buckling are not directly accounted for,
and we assume that the stress levels are not high enough to induce either phenomenon. The present topology opti-
mization problem is solved using the method of moving asymptotes (MMA).98 The MMA method is a gradient-based
optimization method that is efficient at solving large-scale constrained optimization problems by solving a sequence of
convex subproblems. The convergence tolerance for the optimization task is 𝜀opt ≤ 10−5. For each displacement incre-
ment, the Newton–Raphson equation is solved to a tolerance of 𝜀NR ≤ 10−8. The material properties used in this article
are: bulk modulus 𝜅 = 7.33 GPa, shear modulus 𝜇 = 4.40 GPa, initial yield stress 𝜎y = 120 MPa, and hardening modu-
lus K = 900 MPa. With regard to Equation (32), the minimum admissible compliance per unit volume for all optimized
materials is Cmin = 200 N⋅m/m3. For all optimization problem discussed below, we use a continuation scheme for the
penalization factor. More specifically, the penalty factors are increased from p1 = p2 = p3 = 1 to p1 = p2 = p3 = 3. For the first
10 optimization iterations, p1 = p2 = p3 = 1, and then p1, p2, and p3 are increased by 2% from the previous iteration until
p1 = p2 = p3 = 3.
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(A) (B)

F I G U R E 4 Illustration of (A) the working domain used in the study, and (B) its mesh sensitivity study

For macroscopic structural optimization problems, one can use a uniform density distribution for the initial design,
as the corresponding initial displacement field is nonuniform throughout the working domain due to the nature of the
loading, boundary conditions, and geometry. Using an initial design with uniform densities helps avoid any predefined
designs that steer the optimizer into a specific local optimum. The nonuniform displacement field induces nonuniform
sensitivities utilized by the optimizer to attain the next design point in the design space. However, this is not the case
for a homogenized working domain, as an initial uniform density design will result in a uniform strain throughout the
domain and hence uniform sensitivities which cause the optimizer to fail. This problem can be overcome by introducing a
nonuniform initial density distribution or defining some elements as passive. Passive elements are elements in the work-
ing domain that are not allowed to have a density larger than a predefined threshold (e.g., 0.001). These two approaches
will bias the optimizer into a local minimum.

To illustrate this point, the working domain Λ, with 1000 elements, is considered first before running the optimization
problem for a working domain with a finer mesh. We use a coarse mesh to reduce the computational cost, yet highlight
some significant aspects when dealing with periodic elastoplastic microstructures. It is subject to uniaxial compressive
strain (𝜀11 = −2.5%) or pure shear (𝜀12 = 2.5%). The working domain is optimized for maximum end compliance or tough-
ness. We use a volume constraint of V f = 0.5 (i.e., porosity is 50%). We show three scenarios for the initial distribution.
Firstly, we use passive elements (i.e., we enforce a void region) at the center of the working domain, where the volume
fraction of the void is 0.027 (2.7%). In the second case, we enforce passive elements near the corners. The total volume
fraction of the eight voids is 2.7%. Note that both scenarios of selecting the passive elements maintain the symmetry lines
of the RUC along the x1-, x2-, and x3-directions. In the third case, we do not introduce passive elements, but we use a
random density distribution.

Figures 5 and 6 show the designs when the working domain is subject to uniaxial strain and optimized for toughness
and end compliance, respectively. Each objective has three different scenarios: (1) passive elements at the center, (2) pas-
sive elements close to the corners, and (3) initial design with random density distribution. The RUC is not constrained
to possess symmetry axes along the x1-, x2-, and x3-directions. Nevertheless, the RUCs obtained from the first two sce-
narios have such symmetry lines due to the symmetric loading and initial design. Additionally, when we start with a
random distribution (without defining passive elements), the symmetry lines are lost. A similar study is performed when
the working domain is subject to pure shear. Figure 7 shows the RUC designs obtained using both objective functions
discussed above. Figure 8 portrays the stress–strain curves for the different designs. The results discussed above, for both
uniaxial and shear cases, indicate that periodic elastoplastic optimization is dependent on the location of the passive ele-
ments. This leads us to the question of which sites with passive elements one should use, as a priori knowledge of the
solution could steer the optimizer to a better solution.

Finally, we show the optimization results when a working domain with a finer mesh is considered. In the context of
Figure 4, we consider a mesh with 8000 elements, where we assign passive elements at the center. The passive elements
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(A)

(B)

(C)
F I G U R E 5 RUC designs when optimized for toughness, the
porosity is 50%, and it is subject to uniaxial strain (𝜀11): (A) passive
elements at the center, (B) passive elements close to the corners, and (C)
random initial distribution. The images at the leftmost column show
three-dimensionally repeated cells, 27 (3× 3× 3) cells, and the ones at
the rightmost column depict one cell

(A)

(B)

(C)

F I G U R E 6 RUC designs when optimized for end compliance, the
porosity is 50%, and it is subject to uniaxial strain (𝜀11): (A) passive
elements at the center, (B) passive elements close to the corners, and
(C) random initial distribution. The images at the leftmost column show
three-dimensionally repeated cells, 27 (3× 3× 3) cells, and the ones at
the rightmost column depict one cell
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F I G U R E 7 RUC designs with a porosity of 50%, it is subject to shear
strain (𝜀12), and it is optimized for (A) toughness with passive elements at
the center, (B) toughness with passive elements close to the corners, (C) end
compliance with passive elements at the center, and (D) end compliance
with passive elements close to the corners. The images at the leftmost
column show three-dimensionally repeated cells, 27 (3× 3× 3) cells, and the
ones at the rightmost column depict one cell

(A)

(B)

(C)

(D)

F I G U R E 8 Stress–strain curves of unit cells optimized
under (A) uniaxial strain and (B) shear strain. All cells have a
porosity of 50%
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(A)

(B)

(C)

(D)

F I G U R E 9 RUC designs with a porosity of 50%. The working
domain is subject to uniaxial strain (𝜀11), and it is optimized for (A)
toughness and (B) end compliance. The working domain is under shear
strain (𝜀12), and it is optimized for (C) toughness and (D) end
compliance. The images at the leftmost column show
three-dimensionally repeated cells, 27 (3× 3× 3) cells, and the ones at
the rightmost column depict one cell

are at the center of the working domain, where the volume fraction of the void is 0.027 (2.7%). The filter radius used is 2.5×
the element size in a working domain. The working domain is subject to uniaxial compressive strain (𝜀11 = −2.5%) or
pure shear strain (𝜀12 = 2.5%). For each optimization iteration, the boundary value problem is solved using 50 equal-sized
increments of applied displacement. Each working domain is used to maximize the toughness and end compliance, while
maintaining an end porosity of 50% for optimized RUCs. Figure 9 shows the different optimized RUCs obtained from the
different objectives and loading conditions.

6 CONCLUSIONS

In this study, we have proposed a framework for the design of elastoplastic materials with enhanced performance through
the maximization of either toughness or end compliance. The optimization objective is to enhance the performance of
an elastoplastic material obeying the von Mises plasticity model, subject to mass and elastic compliance constraints.
Elastic compliance constraints help maintain the connectivity of the representative unit cell (RUC). We have derived
a path-dependent adjoint method to accurately and efficiently compute the sensitivities of the objective functions and
constraints. Periodic boundary conditions have been imposed using Lagrange multipliers. Also, we have studied the effect
of the initial designs. In our future work, we plan to include the effect of damage and buckling phenomena, as they play
a vital role in determining the mechanical properties of lattice-based materials.
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